原文:【机器学习基础】常见损失函数总结

在机器学习三步走中,其中最重要的就是第二步找到用于衡量模型好坏的方法,也就是损失函数,通过求解最小化损失,从而求得模型的参数。前面分别对线性回归 LR以及实战部分的SVM 决策树以及集成学习算法进行了概述,其中都用到了不同的损失函数,今天在这里对机器学习中常见的损失函数进行一个总结。 常见损失函数总结 上面说到,损失函数的选择对于模型训练起到了至关重要的作用,在不同的算法中往往有着不同的损失函数。 ...

2021-11-09 23:43 0 1050 推荐指数:

查看详情

机器学习常见损失函数

  损失函数机器学习中常用于优化模型的目标函数,无论是在分类问题,还是回归问题,都是通过损失函数最小化来求得我们的学习模型的。损失函数分为经验风险损失函数和结构风险损失函数。经验风险损失函数是指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。通常 ...

Mon Jul 02 04:34:00 CST 2018 0 2050
机器学习常见损失函数

损失函数是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式 ...

Fri Apr 27 09:14:00 CST 2018 0 7121
机器学习】什么是损失函数

一、定义 损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。 经典机器学习算法,他们最本质的区别是分类思想(预测f(x)的表达式)不同,有的是 ...

Tue Feb 15 19:24:00 CST 2022 0 1023
机器学习常见的几种损失函数

     通常机器学习每一个算法中都会有一个目标函数,算法的求解过程是通过对这个目标函数优化的过程。在分类或者回归问题中,通常使用损失函数(代价函数)作为其目标函数损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的算法使用的损失函数不一样。   损失 ...

Mon Jan 01 04:38:00 CST 2018 0 19261
机器学习损失函数

0. 前言 1. 损失函数 2. Margin 3. Cross-Entropy vs. Squared Error 总结 参考资料 0. 前言 “尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手头 90% 的机器学习问题 ...

Fri Dec 01 05:17:00 CST 2017 0 4094
机器学习-——损失函数

###基础概念 损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,换句话,可以解释为我们构建模型得到的预测值与真实值之间的差距。它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心 ...

Tue Oct 23 05:26:00 CST 2018 0 5430
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM