原文:奇异值分解(SVD)

奇异值分解 SVD 特征值与特征向量 对于一个实对称矩阵 A in R n times n ,如果存在 x in R n 和 lambda in R 满足: begin align Ax lambda x end align 则我们说 lambda 是矩阵 A 的一个特征值,而 x 是矩阵 A 的特征值 lambda 所对应的特征向量。可以看出 A 的特征向量 x 乘以矩阵 A ,即 Ax ,不改 ...

2021-11-08 09:47 0 122 推荐指数:

查看详情

奇异值分解SVD

0 - 特征分解(EVD) 奇异值分解之前需要用到特征分解,回顾一下特征分解。 假设$A_{m \times m}$是一个是对称矩阵($A=A^T$),则可以被分解为如下形式, $$A_{m\times m}=Q_{m\times m}\Sigma_{m\times m} Q_{m ...

Sun Oct 20 22:57:00 CST 2019 0 404
奇异值分解SVD

奇异值分解   特征分解是一个提取矩阵特征很不错的方法,但是它只是对方阵而言的,在现实的世界中,我们看到的大部分矩阵都不是方阵。  奇异值分解基本定理:若 $ A$ 为 $ m \times n$ 实矩阵, 则 $ A$ 的奇异值分解存在   $A=U \Sigma V^{T ...

Sun Oct 03 00:35:00 CST 2021 1 150
奇异值分解SVD

文档链接:http://files.cnblogs.com/files/bincoding/%E5%A5%87%E5%BC%82%E5%80%BC%E5%88%86%E8%A7%A3.zip 强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布 ...

Wed May 24 00:01:00 CST 2017 0 1718
降维之奇异值分解(SVD)

看了几篇关于奇异值分解(Singular Value Decomposition,SVD)的博客,大部分都是从坐标变换(线性变换)的角度来阐述,讲了一堆坐标变换的东西,整了一大堆图,试图“通俗易懂”地向读者解释清楚这个矩阵分解方法。然而这个“通俗易懂”到我这就变成了“似懂非懂”,这些漂亮的图可把 ...

Fri May 03 05:57:00 CST 2019 0 2125
矩阵奇异值分解(SVD)及其应用

前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征分解的一种解释。特征奇异在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲 ...

Thu Sep 13 04:09:00 CST 2018 2 4026
奇异值分解(SVD)原理及应用

一、奇异与特征基础知识: 特征分解奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征分解奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征分解吧: 1)特征: 如果说一个向量v ...

Sat Oct 06 05:14:00 CST 2018 0 4057
[数学基础]奇异值分解SVD

  之前看到过很多次奇异值分解这个概念,但我确实没有学过。大学线性代数课教的就是坨屎,我也没怎么去上课,后来查了点资料算是搞清楚了,现在写点东西总结一下。   奇异值分解,就是把一个矩阵拆成一组矩阵之和。在数学里面,因式分解,泰勒展开,傅里叶展开,特征分解奇异值分解都是这个路数。就是把当前 ...

Sun Jun 23 07:54:00 CST 2019 0 464
奇异值分解(SVD)详解及其应用

1.前言 第一次接触奇异值分解还是在本科期间,那个时候要用到点对点的刚体配准,这是查文献刚好找到了四元数理论用于配准方法(点对点配准可以利用四元数方法,如果点数不一致更建议应用ICP算法)。一直想找个时间把奇异值分解理清楚、弄明白,直到今天才系统地来进行总结 ...

Wed Jan 06 00:51:00 CST 2021 0 327
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM