本次演示使用的数据来自2017年发表于Cell的头颈鳞癌单细胞文章:Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer。本次演示提供处理 ...
. 起因 之前的代码 单细胞分析实录 : 非负矩阵分解 NMF 代码演示 没有涉及到python语法,只有 个python命令行,就跟Linux下面的ls grep一样的。然鹅,有几个小伙伴不会命令行,所以我决定再改写一下,把命令行都放到R下面运行。 . 尝试 . 一开始,我的想法是教大家在R里面调用python,需要提前下载好anaconda和一些python包 然而想了想在Windows上安 ...
2021-11-04 14:51 0 214 推荐指数:
本次演示使用的数据来自2017年发表于Cell的头颈鳞癌单细胞文章:Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer。本次演示提供处理 ...
相信做过肿瘤单细胞的小伙伴对这个分析并不陌生,如果多读几篇文献,就能在CNS以及大子刊上面看到这个分析。 非负矩阵分解(Nonnegative Matrix Factorization,NMF)是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法。 基本思想:给定一个非负矩阵V, NMF ...
一、矩阵分解回想 矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积。对于上述的用户-商品(评分矩阵),记为能够将其分解为两个或者多个矩阵的乘积,如果分解成两个矩阵和 。我们要使得矩阵和 的乘积能够还原原始的矩阵 当中,矩阵表示的是m个用户于k个主题之间的关系,而矩阵表示的是k个主题与n ...
之前写过三篇和CNV相关的帖子,如果你做肿瘤单细胞转录组,大概率看过: 单细胞分析实录(11): inferCNV的基本用法 单细胞分析实录(12): 如何推断肿瘤细胞 单细胞分析实录(13): inferCNV结合UPhyloplot2分析肿瘤进化 其中,第三篇帖子里面有两个注释代码 ...
一、矩阵分解回想 在博文推荐算法——基于矩阵分解的推荐算法中,提到了将用户-商品矩阵进行分解。从而实现对未打分项进行打分。 矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积。对于上述的用户-商品矩阵(评分矩阵),记为 Vm×n 。能够将其分解 ...
在文本主题模型之潜在语义索引(LSI)中,我们讲到LSI主题模型使用了奇异值分解,面临着高维度计算量太大的问题。这里我们就介绍另一种基于矩阵分解的主题模型:非负矩阵分解(NMF),它同样使用了矩阵分解,但是计算量和处理速度则比LSI快,它是怎么做到的呢? 1. 非负矩阵分解(NMF)概述 ...
作者:桂。 时间:2017-04-14 06:22:26 链接:http://www.cnblogs.com/xingshansi/p/6685811.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 之前梳理了一下非负矩阵分解(Nonnegative ...