原文:决策树 机器学习,西瓜书p80 表4.2 使用信息增益生成决策树及后剪枝

使用信息增益构造决策树,完成后剪枝 目录 使用信息增益构造决策树,完成后剪枝 构造决策树 根结点的选择 色泽 信息增益 根蒂 信息增益 敲声 信息增益 纹理 信息增益 脐部 信息增益 触感 信息增益 选择根结点构建决策树 对分支结点 , , , 进行划分 色泽 信息增益 根蒂 信息增益 敲声 信息增益 纹理 信息增益 触感 信息增益 选择分类结点构建决策树 对分支 , , , 进行划分 色泽 信息 ...

2021-11-01 09:41 0 775 推荐指数:

查看详情

统计学习方法之决策树(2)信息增益比,决策树生成算法

声明:原创内容,如需转载请注明出处 今天讲解的内容是: 信息增益比,决策树生成算法—ID3和C4.5 我们昨天已经学习了什么是信息增益,并且通过信息增益来选择最优特征,但是用信息增益会出现偏向于选择取值多的特征。 来解释下这句话。以最极端的情况举例,比如有 ...

Mon Nov 02 03:52:00 CST 2015 0 4157
机器学习(周志华)》笔记--决策树(2)--划分选择:信息熵、信息增益信息增益率、基尼指数

四、划分选择   1、属性划分选择   构造决策树的关键是如何选择最优划分属性。一般而言,随着划分过程不断进行,我们希望决策树的分支结点所包含的样本尽可能属于同一类别,即结点的“纯度”越来越高。   常用属性划分的准则:     (1)ID3:信息增益     (2)C4.5:增益率 ...

Tue Feb 04 02:23:00 CST 2020 0 1928
机器学习--决策树之回归剪枝算法

上一篇介绍了决策树之分类构造的几种方法,本文主要介绍使用CART算法构建回归剪枝算法实现。主要包括以下内容: 1、CART回归的介绍 2、二元切分的实现 3、总方差法划分特征 4、回归的构建 5、回归的测试与应用 6、剪枝算法 一、CART回归的介绍 回归与分类 ...

Tue Jan 23 09:08:00 CST 2018 1 6806
决策树算法2-决策树分类原理2.3-信息增益

决策树的划分依据-信息增益率C4.5 1 背景 信息增益准则ID3对可取值数目较多的属性有所偏好,为减少这种偏好可能带来的不利影响,著名的 C4.5 决策树算法[Quinlan, 1993J 不直接使用信息增益,而是使用"增益率" (gain ratio) 来选择最优划分 ...

Wed Sep 22 23:22:00 CST 2021 0 230
决策树(一):原理&熵&条件熵&信息增益

1.决策树思想:以信息增益作为指标,得出最高效的一种决策方案,可用于回归或者分类问题。【由if-else演化而来,后续可发展成机器学习中的随机森林算法】 2.决策树指标: 香农:消除随机不确定性的东西。 信息熵:定量表示(某种事物)随机不确定性的大小。 样本:假设一个人身上有四种 ...

Thu Apr 30 06:51:00 CST 2020 0 580
决策树 - 熵,信息增益的计算

故事从一条小学数学题说起 "爸爸,熊猫为什么是3个不是11个" "宝贝,你还没学二进制好吗....." 以上故事纯属虚构,真实的对话其实是这样的 "爸爸, 为什么3比4小" "宝贝,数一 ...

Thu Dec 01 04:43:00 CST 2016 4 9916
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM