原文:拓端tecdat|R语言结合新冠疫情COVID-19对股票价格预测:ARIMA,KNN和神经网络时间序列分析

原文链接:http: tecdat.cn p 原文出处:拓端数据部落公众号 .概要 本文的目标是使用各种预测模型预测Google的未来股价,然后分析各种模型。Google股票数据集是使用R中的Quantmod软件包从Yahoo Finance获得的。 .简介 预测算法是一种试图根据过去和现在的数据预测未来值的过程。提取并准备此历史数据点,来尝试预测数据集所选变量的未来值。在市场历史期间,一直有一种 ...

2021-10-27 22:01 0 110 推荐指数:

查看详情

tecdat|R语言用Garch模型和回归模型对股票价格分析

原文链接:http://tecdat.cn/?p=18310 为了找出影响价格波动的主要因素,我们使用逐步回归法来剔除一些对于应变量即价格影响很小的自变量剔除出我们的模型,我们分别把WTI Price Field 等自变量的名称改为x1,x2……,最后的突发事件需要用到哑变量,哑变量 ...

Fri Dec 11 07:25:00 CST 2020 0 460
tecdat|R语言用综合信息准则比较随机波动率(SV)模型对股票价格时间序列建模

原文链接:http://tecdat.cn/?p=23882 原文出处:数据部落公众号 摘要 随机波动率(SV)模型是常用于股票价格建模的一系列模型。在所有的SV模型中,波动率都被看作是一个随机的时间序列。然而,从基本原理和参数布局的角度来看,SV模型之间仍有很大的不同。因此,为一组给定 ...

Fri Oct 08 18:44:00 CST 2021 0 115
tecdat|R语言ARIMA集成模型预测时间序列分析

本文我们使用4个时间序列模型对每周的温度序列建模。第一个是通过auto.arima获得的,然后两个是SARIMA模型,最后一个是Buys-Ballot方法。 我们使用以下数据 k=620n=nrow(elec)futu=(k+1):ny=electricite$Load[1:k]plot(y ...

Fri Nov 12 01:13:00 CST 2021 0 119
tecdat:Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列

原文链接: http://tecdat.cn/?p=24092 原文出处:数据部落公众号 前言 在量化金融中,我学习了各种时间序列分析技术以及如何使用它们。 通过发展我们的时间序列分析 (TSA) 方法组合,我们能够更好地了解已经发生的事情,并对未来做出更好、更有利的预测。示例应用 ...

Tue Nov 02 00:39:00 CST 2021 0 903
tecdat|R语言模拟和预测ARIMA模型、随机游走模型RW时间序列趋势可视化

原文链接:http://tecdat.cn/?p=25122 原文出处:数据部落公众号 当一个序列遵循随机游走模型时,就说它是非平稳的。我们可以通过对时间序列进行一阶差分来对其进行平稳化,这将产生一个平稳序列,即零均值白噪声序列。例如,股票的股价遵循随机游走模型,收益序列价格序列 ...

Fri Feb 04 21:35:00 CST 2022 0 774
tecdat|R语言时间序列ARIMA / GARCH模型的交易策略在外汇市场预测应用

原文链接:http://tecdat.cn/?p=17622 最近,我们继续对时间序列建模进行探索,研究时间序列模型的自回归和条件异方差族。我们想了解自回归移动平均值(ARIMA)和广义自回归条件异方差(GARCH)模型。它们在量化金融文献中经常被引用。 接下来是我对这些模型的理解 ...

Wed Nov 04 20:09:00 CST 2020 0 633
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM