1、Feature-Fused SSD: Fast Detection for Small Objects (ICGIP2017) 融合特征的SSD [1709.05054] Feature-Fused SSD: Fast Detection for Small Objects https ...
特征融合的目的,是把从图像中提取的特征,合并成一个比输入特征更具有判别能力的特征。如何正确融合特征是一个难题。 在很多工作中,融合不同尺度的特征是提高分割性能的一个重要手段。低层特征分辨率更高,包含更多位置 细节信息,但是由于经过的卷积更少,其语义性更低,噪声更多。高层特征具有更强的语义信息,但是分辨率很低,对细节的感知能力较差。如何将两者高效融合,取其长处,弃之糟泊,是改善分割模型的关键。很多工 ...
2021-10-27 14:57 0 6062 推荐指数:
1、Feature-Fused SSD: Fast Detection for Small Objects (ICGIP2017) 融合特征的SSD [1709.05054] Feature-Fused SSD: Fast Detection for Small Objects https ...
深度特征融合---高低层(多尺度)特征融合 U-Net中的skip connection 在很多工作中,融合不同尺度的特征是提高分割性能的一个重要手段。低层特征分辨率更高(low-level information),包含更多位置、细节信息,但是由于经过的卷积更少,其语义性更低 ...
参考文献 Multi-Layer Background Subtraction Based on Color and Texture CVPR-VS 2007 与前一篇文章的大体思路一致,提取纹理特征和颜色特征,建立背景模型,并实时更新背景模型. 纹理特征:LBP. 颜色特征:借鉴码本模型 ...
引言 该文是由EPFL的Calonder在ECCV2010上提出了一种可以快速计算且表达方式为二进制编码的描述子。主要思路就是在特征点附近随机选取若干点对,将这些点对的灰度值的大小,组合成一个二进制串,并将这个二进制串作为该特征点的特征描述子。 算法描述 首先,该文特征点提取算法与SIFT ...
目标检测中特征融合技术(YOLO v4)(下) ASFF:自适应特征融合方式 ASFF来自论文:《Learning Spatial Fusion for Single-Shot Object Detection》,也就是著名的yolov3-asff。 金字塔特征表示法(FPN)是解决目标检测 ...
目标检测中特征融合技术(YOLO v4)(上) 论文链接:https://arxiv.org/abs/1612.03144 Feature Pyramid Networks for Object Detection Tsung-Yi Lin, Piotr Dollár, Ross ...
前言:Hello 大家好,我是小花,又和大家见面了,前面的文章一直是对机器学习的基本分类,回归,聚类算法进行学习。那时候我记得给了大家很多特征,当时我说,特征的好坏决定了机器学习算法的效果。那么接下来,我将会带着大家研究研究机器学习的特征。 这是我在ICML上看到的一篇文章,作者是华盛顿大学 ...
输出: 说明: bert中文base版总共有12层,也就是每一层都可以输出相应的特征,我们可以使用model.all_encoder_layers来获取,然后我们将每一层的768维度的特征映射成1维,对每一个特征进行最后一个维度的拼接后经过softmax层,得到 ...