原文:1*1的卷积核的原理及作用

.原理 对于 的卷积核来说,实际上就是实现不同通道数据之间的计算,由于卷积窗口为 ,那么他不会对同一通道上相邻的数据进行改变,而是将不同通道之间的数据进行相加. 输入和输出具有相同的高和宽。输出中的每个元素来自输入中在高和宽上相同位置的元素在不同通道之间的按权重累加。假设我们将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么 的卷积层和全连接层等价,即不改变高和宽的情况下,将不同通道数据 ...

2021-10-21 14:05 0 1401 推荐指数:

查看详情

卷积核的工作原理

  卷积是图像处理中一个操作,是kernel在图像的每个像素上的操作。Kernel本质上一个固定大小的矩阵数组,其中心点称为锚点(anchor point)。把kernel放到像素数组之上,求锚点周围覆盖的像素乘积之和(包括锚点),用来替换锚点覆盖下像素点值称为卷积处理。数学表达 ...

Wed Jan 01 01:42:00 CST 2020 0 1755
1*1卷积核作用

1.降维或升维,减少参数量 通过1*1卷积核的个数,来控制输出的通道数也就是维度 通过一次卷积操作,W*H*6将变为W*H*1,这样的话,使用5个1*1的卷积核,显然可以卷积出5个W*H*1,再做通道的串接操作,就实现了W*H*5 对于某个卷积层,无论输入图像有多少个通道,输出图像通道数总是 ...

Wed Jun 12 04:46:00 CST 2019 0 614
1*1卷积核作用

1.改变模型维度 二维的输入数据(如\(6*6\))和\(1*1\)的卷积核 卷积,相当于原输入数据直接做乘法 三维的输入数据(如\(6*6*32\))和\(1*1*32\)的卷积核卷积,相当于卷积核的32个数对原输入数据的32个数加权求和,结果填到最右侧对应方框中 升维 ...

Thu Mar 14 02:59:00 CST 2019 1 726
1*1卷积核的理解和作用

权值共享基本上有两种方法: 在同一特征图和不同通道特征图都使用共享权值,这样的卷积参数是最少的,例如上一层为30*30*40,当使用3*3*120的卷积核进行卷积时,卷积参数为:3*3*120个.(卷积跟mlp有区别也有联系一个神经元是平面排列,一个是线性排列) 第二种只在同一特征图上 ...

Thu Oct 04 05:13:00 CST 2018 0 4784
1x1的卷积核有什么作用

信道压缩~通~通~减 一、1 X 1的卷积核作用  所谓信道压缩,Network in Network是怎么做到的?  对于如下的二维矩阵,做卷积,相当于直接乘以2,貌似看上去没什么意义:  但是,对于下面这种32通道的数据,如果我用1个1x1x32的卷积核与其做卷积运算,得到 ...

Fri Apr 26 18:09:00 CST 2019 0 1096
卷积核

以一张图片作为开始吧: 这里的输入数据是大小为(8×8)的彩色图片,其中每一个都称之为一个feature map,这里共有3个。所以如果是灰度图,则只有一个feature map。 进行卷积操作时,需要指定卷积核的大小,图中卷积核的大小为3,多出来的一维3不需要在代码中指定,它会 ...

Fri Dec 04 06:38:00 CST 2020 0 751
【深度学习】CNN 中 1x1 卷积核作用

【深度学习】CNN 中 1x1 卷积核作用 最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前接触过的教材的例子中最小的卷积核 ...

Fri Mar 08 05:26:00 CST 2019 0 1021
卷积层、卷积核

每个卷积核具有长、宽、深三个维度。 卷积核的长、宽都是人为指定的,长X宽也被称为卷积核的尺寸,常用的尺寸为3X3,5X5等;卷积核的深度与当前图像的深度(feather map的张数)相同,所以指定卷积核时,只需指定其长和宽两个参数。 例如,在原始图像层 (输入层),如果图像是灰度图像 ...

Sun Feb 06 00:35:00 CST 2022 0 1118
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM