在处理数据用于建模的时候,遇到了长尾数据,需要处理异常值,于是参考网上的资料,重新写了函数。 是把一个DataFrame的某列超过预计范围(IQR方法)的数据重新赋值为上、下限的方法,如果要删除异常值,需要修改后面几个。 使用的时候,直接把一个df输入,指定一个列,就可以输出一个 ...
Sklearn异常检测模型一览 Robust covariance: https: scikit learn.org stable modules generated sklearn.covariance.EllipticEnvelope.html sklearn.covariance.EllipticEnvelope Robust convarianceimport numpy as npfro ...
2021-10-17 11:08 0 154 推荐指数:
在处理数据用于建模的时候,遇到了长尾数据,需要处理异常值,于是参考网上的资料,重新写了函数。 是把一个DataFrame的某列超过预计范围(IQR方法)的数据重新赋值为上、下限的方法,如果要删除异常值,需要修改后面几个。 使用的时候,直接把一个df输入,指定一个列,就可以输出一个 ...
...
异常值概念:是指那些远离正常值的观测,即“不合群”观测。异常值的出现一般是人为的记录错误或者是设备的故障等,异常值的出现会对模型的创建和预测产生 严重的后果。当然异常值也不一定是坏事,有些情况下,通过寻找异常值就能够给业务带来良好的发展,如销毁“钓鱼”网站,关闭“薅羊毛”用户的权限 ...
异常值是指数据中个别值的数值明显偏离其余的数值,有时也称为离群点,检测异常值 就是检验数据中是否有录入错误以及是否含有不合理的数据。 异常值的存在对数据分析十分危险,如果计算分析过程的数据有异常值,那么会对结果 会产生不良影响,从而导致分析结果产生偏差乃至错误 ...
异常值是模型优化的关键点之一,离均值远的是异常值,可是多远才算足够远呢,其实不同的模型有着不同的考量,基于模型所受的影响不同,所以所能忍受的异常值也不同。 1、异常值的类型 从二维的角度来说,其实异常值有三种类型,一是影响垂直方向Y的异常值,叫垂直特异性,对应探测该类异常的指标为标准化残差 ...
异常值处理 觉得有用的话,欢迎一起讨论相互学习~ 版权声明:本文为CSDN博主「sljwy」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/sinat_23971513/article/details ...
vs 强影响点) 异常值的处理可以通过盖帽法进行处理。 如果一个置信区间左右两边各有3个标准差 ...
首先运用的是pandas数据分析模块和matplotlib数据绘图模块 下面简单处理和操作 import pandas as pd #使用pandas读取数据import matplotlib.pyplot as pl#导入图像库url="D:\python数据挖掘\图书配套数据、代码 ...