的方法,其中比较普及的就是拉格朗日插值。 二,定义 对某个多项式函数,已知有给定的k + ...
拉格朗日插值 很久很久以前,有一个人叫拉格朗日,他发现了拉格朗日插值,可以求出给出函数 f x 的 n 个点,求出这个函数 f x 的值。 推论: 根据某些定理可知: f x equiv f a bmod x a 那么我们就可以把这个 n 个点的式子全部列出来。最终为 f x equiv f x bmod x x 计算: 我们可以发现,这个式子特别类似于中国剩余定理的式子,那么根据中国剩余定理,我 ...
2021-10-15 19:21 0 143 推荐指数:
的方法,其中比较普及的就是拉格朗日插值。 二,定义 对某个多项式函数,已知有给定的k + ...
本文部分转载自: 知乎 中文维基 有何用 板子:给出平面上n+1个点,求一条穿过这n+1个点的n次多项式,或这个多项式在另一个点处的值。 显然可以高斯消元求出每一项系数,然后输出/直接爆算。 其实拉格朗日插值有两种:朴素的,和重心拉个朗日插值。一般情况下,朴素的和高斯消元在求解第1问时 ...
拉格朗日插值 插值真惨 众所周知$k+1$个点可以确定一个$k$次多项式,那么插值就是通过点值还原多项式的过程。 设给出的$k+1$个点分别是$(x_0,y_0),(x_1,y_1),...,(x_k,y_k)$,那么xjb构造一下: 设函数$f_i(x)=\frac{\prod ...
逛知乎时偶然看到了一个很经典的找规律填数问题,然后下面的回答基本都是 114514恶臭,突然想知道大伙是如何构造出这种能填入恶臭数字的函数的,于是就去了解了一波插值,于是就学了一波拉格朗日插值,于是就有了这篇博客。 引入 众所周知,\(n+1\) 个点 \((x_i,y_i ...
拉格朗日差值公式: 拉格朗日插值法 在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫,拉格朗日命名的一种多项式差值方法。——百度百科 为什么学它? 在oi中,可以 水 这道题 ...
/m0_37395228/article/details/80874393 五,优点和缺点 拉格朗 ...
拉格朗日插值原理: 拉格朗日插值的具体介绍网址:https://zh.wikipedia.org/wiki/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E6%8F%92%E5%80%BC%E6%B3%95 翻译成人话就是,该曲线是由多个n次多项式的和构成的,n ...
简介 在数值分析中,拉格朗日插值法是以法国18世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法。如果对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。上面这样的多项式就称为拉格朗日(插值)多项式 ...