原文链接:http://tecdat.cn/?p=18310 为了找出影响价格波动的主要因素,我们使用逐步回归法来剔除一些对于应变量即价格影响很小的自变量剔除出我们的模型,我们分别把WTI Price Field 等自变量的名称改为x1,x2……,最后的突发事件需要用到哑变量,哑变量 ...
原文链接:http: tecdat.cn p 原文出处:拓端数据部落公众号 摘要 随机波动率 SV 模型是常用于股票价格建模的一系列模型。在所有的SV模型中,波动率都被看作是一个随机的时间序列。然而,从基本原理和参数布局的角度来看,SV模型之间仍有很大的不同。因此,为一组给定的股票价格数据选择最合适的SV模型对于对股票市场的未来预测非常重要。为了实现这一目标,可以使用留一交叉验证 LOOCV 方法 ...
2021-10-08 10:44 0 115 推荐指数:
原文链接:http://tecdat.cn/?p=18310 为了找出影响价格波动的主要因素,我们使用逐步回归法来剔除一些对于应变量即价格影响很小的自变量剔除出我们的模型,我们分别把WTI Price Field 等自变量的名称改为x1,x2……,最后的突发事件需要用到哑变量,哑变量 ...
原文链接:http://tecdat.cn/?p=24057 原文出处:拓端数据部落公众号 1.概要 本文的目标是使用各种预测模型预测Google的未来股价,然后分析各种模型。Google股票数据集是使用R中的Quantmod软件包从Yahoo Finance获得的。 2.简介 预测 ...
原文链接:http://tecdat.cn/?p=23934 原文出处:拓端数据部落公众号 引言 在本文中,我们将尝试为苹果公司的日收益率寻找一个合适的 GARCH 模型。波动率建模需要两个主要步骤。 指定一个均值方程(例如 ARMA,AR,MA,ARIMA 等)。 建立 ...
原文链接:http://tecdat.cn/?p=23991 原文出处:拓端数据部落公众号 在这个例子中,我们考虑随机波动率模型 SV0 的应用,例如在金融领域。 统计模型 随机波动率模型定义如下 并为 其中 yt 是因变量,xt 是 yt 的未观察到的对数波动率。N(m ...
原文链接:http://tecdat.cn/?p=24211 原文出处:拓端数据部落公众号 描述 使用 garch 指定一个单变量GARCH(广义自回归条件异方差)模型。 garch 模型的关键参数包括: GARCH 多项式,由滞后条件方差组成。阶数用P表示 ...
原文链接:http://tecdat.cn/?p=24441 原文出处:拓端数据部落公众号 我们研究波动聚集,以及使用单变量 GARCH(1,1) 模型对其进行建模。 波动聚集 波动聚集——存在相对平稳时期和高波动时期的现象——是市场数据的一个看似普遍的属性。对此没有普遍接受的解释 ...
原文链接:http://tecdat.cn/?p=16708 波动率是一个重要的概念,在金融和交易中有许多应用。这是期权定价的基础。波动率还使您可以确定资产分配并计算投资组合的风险价值(VaR)。甚至波动率本身也是一种金融工具,例如CBOE的VIX波动率指数。但是,与证券价格或利率 ...
原文 :http://tecdat.cn/?p=3726 这次,我们将使用k-Shape时间序列聚类方法检查与我们有业务关系的公司的股票收益率的时间序列。 执行环境如下。 R:3.5.1 企业对企业交易和股票价格 在本研究中,我们将研究具有交易关系的公司的价格变化率 ...