在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler's totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理 ...
在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler's totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理 ...
...
蒟蒻要开始打数论模板了。 欧拉函数:小于n且与n互素的数个数,记为φ(n) 它有这样几个优越的性质:转自https://yq.aliyun.com/articles/15314 1. phi(p) == p-1 因为素数p除了1以外的因子只有p,所以与 p 互素的个数是 p ...
基本定理: 首先看一下核心代码: 核心代码 原理解析: 当初我看不懂这段代码,主要有这么几个问题: 1.定理里面不是一开始写了一个n*xxx么?为什么代码里没 ...
关系。 欧拉函数 欧拉函数φ(n)是小于或等于n的正整数中与n互质的数的数目,称为欧拉函数 ...
1. log(z), z^(1/n) 等都是多值函数,这里所谓的多值,表现不是theta+2pi后对应复平面上的一个点,而是对应复平面上的多个点--(考虑:比分开方操作与取对数操作) 采用分割支让其变成单值函数, 分割支的范围是 (r>0, a<theta< ...
欧拉函数(Euler's totient function)是指小于n的正整数中与n互质的数的数目,用φ(n)表示。特别的,φ(1)=1; 例如:φ(10)=4;1 3 7 9与10互质。 公式:φ(n)=n*(1-1/p(1))*(1-1/p(2))*(1-1/p ...
思路: 因为当n>=1e10的时候,线性筛就不好使啦。所以要用一个公式 φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn) 证明详见:《公式证明:欧拉函数》 Miller-Rabin算法: 判断某个数是否是素数 ...