原文:线性代数笔记第04讲 矩阵的 LU 分解

. 关于转置和取逆的有一些性质 boldsymbol A boldsymbol B T boldsymbol B T boldsymbol A T boldsymbol A boldsymbol B boldsymbol B boldsymbol A begin gather boldsymbol A boldsymbol A boldsymbol I boldsymbol A boldsymb ...

2021-10-05 18:52 0 312 推荐指数:

查看详情

线性代数笔记10——矩阵LU分解

  在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积)。LU分解主要应用在数值分析中,用来解线性方程、求反矩阵或计算行列式。 什么是LU分解   如果有一个矩阵A,将A表示 ...

Thu Aug 30 02:21:00 CST 2018 0 9653
线性代数笔记第02 矩阵消元

2.1 消元法 消元法,这个方法最早由高斯提出,也叫高斯消元法:是为了求解线性方程组的。应用消元法求解的时候,通常会应用以下三种变换,并且每一种变换都不会改变方程组的解: 交换方程组中任意两个方程的位置; 用一个数乘某一个方程的左右两边; 将一个方程的两边乘一个数然后加到另一 ...

Mon Oct 04 19:03:00 CST 2021 0 196
线性代数】 A的LU分解

线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积)。LU分解主要应用在数值分析中,用来解线性方程、求反矩阵或计算行列式。 将矩阵A化为行阶梯形矩阵 ...

Fri Oct 01 06:00:00 CST 2021 0 206
线性代数笔记1——矩阵的基本运算

  简单来说,矩阵是充满数字的表格。   A和B是两个典型的矩阵,A有2行2列,是2×2矩阵;B有2行3列,是2×3矩阵;A中的元素可用小写字母加行列下标表示,如a1,2 = 2, a2,2 = 4 矩阵加减法   两个矩阵相加或相减,需要满足两个矩阵的列数和行数一致。   加法交换律 ...

Sat Oct 14 05:22:00 CST 2017 0 13224
线性代数笔记第03 矩阵乘法和逆矩阵

3.1 矩阵乘法 行列内积  有 $m \times n$ 矩阵 $\boldsymbol{A}$ 和 $n \times p$ 矩阵 $\boldsymbol{B}$( $\boldsymbol{B}$ 的总行数必须与 $\boldsymbol{A}$ 的总列数相等),两矩阵相乘 ...

Tue Oct 05 01:23:00 CST 2021 0 150
线性代数笔记31——奇异值分解

  原文 | https://mp.weixin.qq.com/s/HrN8vno4obF_ey0ifCEvQw   奇异值分解(Singular value decomposition)简称SVD,是将矩阵分解为特征值和特征向量的另一种方法。奇异值分解可以将一个比较复杂的矩阵用更小更简单的几个 ...

Wed Dec 11 02:45:00 CST 2019 0 598
线性代数笔记9——消元矩阵与置换矩阵

消元矩阵   如果用矩阵表示一个有解的方程组,那么矩阵经过消元后,最终能变成一个上三角矩阵U。用一个三元一次方程组举例:   A经过一些列变换,最终得到了一个上三角矩阵U:   回代到方程组后可以直接求解:   如果上面的变换去掉增广矩阵,可以简写为:   矩阵 ...

Wed Aug 29 01:43:00 CST 2018 0 6781
线性代数笔记15——矩阵空间和秩1矩阵

矩阵空间   矩阵空间是对向量空间的扩展,因为矩阵的本质是向量,所以与向量空间类似,也存在矩阵空间。   在向量空间中,任意两个向量的加法和数乘仍然在该空间内。类似的,所有固定大小的矩阵也组成了矩阵空间,在空间内的任意两个矩阵的加法和数乘也在该空间内。例如,M是所有3×3矩阵构成的空间,空间 ...

Thu Oct 11 07:43:00 CST 2018 0 2436
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM