论文标题:Bootstrap Your Own Latent A New Approach to Self-Supervised Learning 论文方向:图像领域 论文来源:NIPS2020 论文链接:https://arxiv.org/abs/2006.07733 论文代码 ...
Bootstrap Your Own Latent A New Approach to Self Supervised Learning Intro 文章提出一种不需要负样本来做自监督学习的方法,提出交替更新假说解释EMA方式更新target network防止collapse的原因,同时用梯度解释online网络和target不同构带来的好处。 Intuitions 传统基于对比学习的自监督方法 ...
2021-10-02 19:57 0 107 推荐指数:
论文标题:Bootstrap Your Own Latent A New Approach to Self-Supervised Learning 论文方向:图像领域 论文来源:NIPS2020 论文链接:https://arxiv.org/abs/2006.07733 论文代码 ...
Contrastive Self-Supervised Learning 2020-01-30 10:32:24 Source: https://ankeshanand.com/blog/2020/01/26 ...
Self-Supervised Learning with Swin Transformers 2021-05-11 20:32:02 Paper: https://arxiv.org/pdf/2105.04553.pdf Code: https://github.com ...
自监督学习(Self-Supervised Learning)多篇论文解读(上) 前言 Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题。所以近期大家的研究关注点逐渐转向了Unsupervised learning,许多顶 ...
自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测、旋转预测、灰度图片上色、视频帧排序等等。CVPR19和ICCV19上,Google Brain的几个研究员发表了两篇论文 ...
自监督学习 自监督学习(Self-Supervised Learning)是一种介于无监督和监督学习之间的一种新范式,旨在减少深度网络对大量注释数据的需求。大量的人工标注的样本是费时耗力的。 它通过定义无注释(annotation-free)的前置任务(pretext task),为特征学习 ...
Virtual Adversarial Training: a Regularization Method for Supervised and Semi-supervised Learning 简介 本文是17年半监督学习的一篇文章,受对抗训练的启发,将对抗训练的范式用于提升半监督学习 ...
Good Semi-supervised Learning That Requires a Bad GAN 恢复博客更新,最近没那么忙了,记录一下学习。 Intro 本文是一篇稍微偏理论的半监督学习的文章,通过证明一个能够生成非目标分布的、低样本密度的样本的生成器,对半监督学习的效果有很大 ...