类标记为,是和的联合概率分布,数据集 由独立同分布产生。 朴素贝叶斯法就是通过训练集来学习 ...
简述 利用观测到的x,利用先验概率和类条件概率,决定x属于哪一类 后验概率无法直接获得,因此我们需要找到方法来计算它,而解决方法就是引入贝叶斯公式。 贝叶斯理论 可以看出,贝叶斯公式是 由果溯因 的思想,当知道某件事的结果后,由结果推断这件事是由各个原因导致的概率为多少。 先验概率:执因求果,这是一个根据以往经验和分析统计得到的,或自身依据经验得出的一个概率。 后验概率:知果求因。指某件事已经发生 ...
2021-09-20 00:19 0 141 推荐指数:
类标记为,是和的联合概率分布,数据集 由独立同分布产生。 朴素贝叶斯法就是通过训练集来学习 ...
极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。即在频率学派中,参数固定了,预测 值也就固定了。最大后验概率是贝叶斯学派在完全贝叶斯不一定可行后采用的一种近似手。如果数据量足够大,最大后验概率和最大似 然估计趋向于一致,如果数据为0,最大后验 ...
朴素贝叶斯分类原理 对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入\(x\),利用贝叶斯定理求出后验概率最大的输出\(y\)。 特征独立性假设:在利用贝叶斯定理进行预测时,我们需要求解条件概率\(P(x|y_k)=P(x_1,x_2 ...
朴素贝叶斯法,就是使用贝叶斯公式的学习方法,朴素就是它假设输入变量(向量)的各个分量之间是相互独立的。所以对于分量之间不独立的分布,如果使用它学习和预测效果就不会很好。 简化策略 它是目标是通过训练数据集学习联合概率分布$P(X, Y)$用来预测。书上说,具体是先学习到先验概率 ...
一、贝叶斯分类 是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称贝叶斯分类。而贝叶斯分类中最简单的一种:朴素贝叶斯分类。 二、贝叶斯定理: 已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B ...
模型 生成模型介绍 我们定义样本空间为\(\mathcal{X} \subseteq \mathbb{R}^n\),输出空间为\(\mathcal{Y} = \{c_1, c_2, ..., c_ ...
等组成。 统计学习方法包括假设空间、模型选择的准则、模型学习的算法,这些统称为统计学习方法的三要素: ...
对于技术应用人员来说,我们更看重方法的应用,但有时候对知识的背景做一些了解,我觉得还是挺有必要的,能帮助我们理解一些东西。这篇博文里,不会呈现任何计算公式,只是讨论一下贝叶斯学派与频率学派之间的问题。 贝叶斯学派与频率学派是当今数理统计学的两大学派,基于各自的理论 ...