Bootstrap Your Own Latent A New Approach to Self-Supervised Learning Intro 文章提出一种不需要负样本来做自监督学习的方法,提出交替更新假说解释EMA方式更新target network防止collapse的原因 ...
论文标题:Bootstrap Your Own Latent A New Approach to Self Supervised Learning 论文方向:图像领域 论文来源:NIPS 论文链接:https: arxiv.org abs . 论文代码:https: github.com deepmind deepmind research tree master byol 介绍 BYOL,全称 ...
2021-09-12 12:09 0 174 推荐指数:
Bootstrap Your Own Latent A New Approach to Self-Supervised Learning Intro 文章提出一种不需要负样本来做自监督学习的方法,提出交替更新假说解释EMA方式更新target network防止collapse的原因 ...
自监督学习(Self-Supervised Learning)多篇论文解读(上) 前言 Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题。所以近期大家的研究关注点逐渐转向了Unsupervised learning,许多顶 ...
自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测、旋转预测、灰度图片上色、视频帧排序等等。CVPR19和ICCV19上,Google Brain的几个研究员发表了两篇论文 ...
Contrastive Self-Supervised Learning 2020-01-30 10:32:24 Source: https://ankeshanand.com/blog/2020/01/26 ...
Self-Supervised Learning with Swin Transformers 2021-05-11 20:32:02 Paper: https://arxiv.org/pdf/2105.04553.pdf Code: https://github.com ...
自监督学习 自监督学习(Self-Supervised Learning)是一种介于无监督和监督学习之间的一种新范式,旨在减少深度网络对大量注释数据的需求。大量的人工标注的样本是费时耗力的。 它通过定义无注释(annotation-free)的前置任务(pretext task),为特征学习 ...
VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and Text 2021-07-22 08:54:20 Paper: https://arxiv.org/pdf ...
标签: 自监督、 图神经 动机 首先, 由于很难改变 GCNs 固有的浅层结构, 如何设计一种基于 GCNs 的一致高效的训练算法来提高其在标签节点较少的图上的泛化性能? 其次, ...