1、数值型取列平均值,非数值型取众数(频数最大)。 2、加权平均 2.1 计算变量之间相关系数R,取1/R,再归一化 2.2 归一化方法:除总和,即为权重 其他多重插补、模型预测等方法,我不建议新手用,用不明白,还会把自己整懵了, 人的精力是有限的,做有意义的事。 ...
在学习Pandas时,当对一个Series或者DataFrame进行重新索引时,需要用到pandas.Series.reindex 或者pandas.DataFrame.reindex 。当某个索引值不存在时,会直接引入缺失值NaN。我们可以通过填充的方式,使Series或者DataFrame中新的index拥有新的索引。这篇文章整理下reindex中关于填充缺失值的几个方法 索引对象是无法修改 ...
2021-09-09 14:38 0 108 推荐指数:
1、数值型取列平均值,非数值型取众数(频数最大)。 2、加权平均 2.1 计算变量之间相关系数R,取1/R,再归一化 2.2 归一化方法:除总和,即为权重 其他多重插补、模型预测等方法,我不建议新手用,用不明白,还会把自己整懵了, 人的精力是有限的,做有意义的事。 ...
打比赛时,遇到了一个问题。填充空白值的时候,如果使用 固定值,均值啥的都没问题。 但是我想用 但是每次都是报错 经过千辛万苦终于找到了问题的根源。 原来,我在加载数据的时候使用了一个 压缩内存的函数 这里面产生了一种新的数据类型 np.float16 而这种类型,在pandas ...
(1)如果缺值的样本占总数比例极高,我们可能就直接舍弃了,作为特征加入的话,可能反倒带入noise,影响最后的结果了; (2)如果缺值的样本适中,而该属性非连续值特征属性(比如说类目属性),那就把NaN作为一个新类别,加到类别特征中; 【注:NaN ...
日期缺失填充方法:https://www.jianshu.com/p/270a9e095699 Python-pandas的fillna()方法-填充空值:https://blog.csdn.net/qq_17753903/article/details/89892631 ...
Pandas使用这些函数处理缺失值: isnull和notnull:检测是否是空值,可用于df和series dropna:丢弃、删除缺失值 axis : 删除行还是列,{0 or ‘index’, 1 or ‘columns’}, default 0 how ...
1、检查缺失值 为了更容易地检测缺失值(以及跨越不同的数组dtype),Pandas提供了isnull()和notnull()函数,它们也是Series和DataFrame对象的方法 - 2、清理/填充缺少 数据Pandas提供了各种方法来清除缺失的值。 fillna()函数 ...
什么是缺失值? 直观上理解,缺失值表示的是“缺失的数据” 创建数据 识别出缺失值或非缺失值 过滤掉一些缺失的行 丢弃缺失值 .dropna() Seriese 使用 dropna 比较简单 ...
缺失值填充是数据预处理最基本的步骤,一般能想到的是固定值填充(均值等统计学方法)、根据与本列有相关关系的列函数表示来填充。这次我用的是em算法进行填充,具体原理后续补充。 主要记录一下步骤: 工具栏:分析 菜单 ----> 缺失值分析------>弹出来的对话框:左边是表格中 ...