摘要:本文(Historical Inertia: An Ignored but Powerful Baseline for Long Sequence Time-series Forecasting)是由华为云数据库创新Lab联合电子科技大学数据与智能实验室发表在顶会CIKM’21的短文 ...
摘要:该论文针对多维时序数据的异常检测问题,提出了基于GAN和AutoEncoder的深度神经网络算法,并取得了当前State of the Art SOTA 的检测效果。论文是云数据库创新LAB在轨迹分析层面取得的关键技术成果之一。 本文分享自华为云社区 ICDE DAEMON论文解读 ,作者:云数据库创新Lab。 导读 本文 DAEMON: Unsupervised Anomaly Dete ...
2021-09-07 10:02 0 177 推荐指数:
摘要:本文(Historical Inertia: An Ignored but Powerful Baseline for Long Sequence Time-series Forecasting)是由华为云数据库创新Lab联合电子科技大学数据与智能实验室发表在顶会CIKM’21的短文 ...
摘要:本文提出了一个端到端的MTS预测框架METRO。METRO的核心思想是利用多尺度动态图建模变量之间的依赖关系,考虑单尺度内信息传递和尺度间信息融合。 本文分享自华为云社区《VLDB'22 METRO论文解读》,作者:云数据库创新Lab 。 0 导读 本文(METRO ...
摘要:针对时间序列离群点检测问题,提出了基于CNN-AutoEncoder和集成学习的CAE-ENSEMBLE深度神经网络算法,并通过大量的实验证明CAE-ENSEMBLE算法能有效提高时间序列离群点检测的准确度与效率。 本文分享自华为云社区《VLDB'22 CAE-ENSEMBLE论文 ...
时序异常检测算法概览 2018-09-03 17:08:49 分类: 人工智能与大数据 来自:论智(微信号:jqr_AI),作者:Pavel Tiunov,编译:weakish来源:statsbot,原文链接 编者按:Statsbot CTO ...
摘要:本文是由华为云数据库创新Lab联合电子科技大学数据与智能实验室发表在顶会CIKM’21的文章,该文章提出首个克服人类移动轨迹数据中普遍存在的多层次周期性、周期偏移现象以及数据稀疏问题的轨迹恢复模型。 本文分享自华为云社区《CIKM'21 PeriodicMove论文解读》,作者:云 ...
时间序列数据伴随着我们的生活和工作。从牙牙学语时的“1, 2, 3, 4, 5, ……”到房价的走势变化,从金融领域的刷卡记录到运维领域的核心网性能指标。时间序列中的规律能加深我们对事物和场景的认识,时间序列中的异常能提醒我们某些部分可能出现问题。那么如何去发现时间序列中的规律、找出其中的异常点 ...
【摘要】 如何去发现时间序列中的规律、找出其中的异常点呢?接下来,我们将揭开这些问题的面纱。 时间序列数据伴随着我们的生活和工作。从牙牙学语时的“1, 2, 3, 4, 5, ……”到房价的走势变化,从金融领域的刷卡记录到运维领域的核心网性能指标。时间序列中的规律能加深我们对事物和场景的认识 ...
1. 主要观点总结 0x1:什么场景下应用时序算法有效 历史数据可以被用来预测未来数据,对于一些周期性或者趋势性较强的时间序列领域问题,时序分解和时序预测算法可以发挥较好的作用,例如: 四季与天气的关系模式 以交通量计算的交通高峰期的模式 心跳的模式 ...