转自:http://blog.csdn.net/bvl10101111/article/details/72615621 先上结论: 1.动量方法主要是为了解决Hessian矩阵病态条件问题(直观上讲就是梯度高度敏感于参数空间的某些方向)的。 2.加速学习 3.一般将参数设为 ...
训练网络时,通常先对网络的初始权值按照某种分布进行初始化,合适的网络初始权值能够使得损失函数在训练过程中的收敛速度更快,从而获得更好的优化结果。但是按照某类分布随机初始化网络权值时,存在一些不确定因素,并不能保证每一次初始化操作都能使得网络的初始权值处在一个合适的状态。不恰当的初始权值可能使得网络的损失函数在训练过程中陷入局部最小值,达不到全局最优的状态。因此,如何消除这种不确定性,是训练深度网 ...
2021-08-26 17:04 0 135 推荐指数:
转自:http://blog.csdn.net/bvl10101111/article/details/72615621 先上结论: 1.动量方法主要是为了解决Hessian矩阵病态条件问题(直观上讲就是梯度高度敏感于参数空间的某些方向)的。 2.加速学习 3.一般将参数设为 ...
前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x(权重),使得f(x)的值最小。 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理。 SGD SGD指stochastic gradient descent,即随机梯度下降。是梯度下降 ...
无论是深度学习还是机器学习,大多情况下训练中都会遇到这几个参数,今天依据我自己的理解具体的总结一下,可能会存在错误,还请指正. learning_rate , weight_decay , momentum这三个参数的含义. 并附上demo. 我们会使用一个 ...
【深度学习】CNN 中 1x1 卷积核的作用 最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前接触过的教材的例子中最小的卷积核 ...
目录 Adagrad法 RMSprop法 Momentum法 Adam法 参考资料 发展历史 标准梯度下降法的缺陷 如果学习率选的不恰当会出现以上情况 因此有一些自动调学习率的方法。一般来说,随着迭代次数的增加,学习率应该越来越小 ...
SGD SGD是深度学习中最常见的优化方法之一,虽然是最常使用的优化方法,但是却有不少常见的问题。 learning rate不易确定,如果选择过小的话,收敛速度会很慢,如果太大,loss function就会在极小值处不停的震荡甚至偏离。每个参数的learning rate都是相同 ...
在机器学习、深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf ...
最终得到的训练比较图,如下,可以看出各种个优化器的: ...