动机 本文是2022年WWW的一篇论文。用户与物品的交互通常由多种意图驱使,但是这些意图通常是潜在的,为了研究意图对序列推荐的作用,作者提出了一个通用范式ICL,它的核心思想是学习到用户的意图并通过 ...
目前正负样本的构造和选择大部分还是采用数据增强,依赖于人的经验和直觉,可能并不是有效的,也缺少可解释性。 本文在特征层面进行data manipulation来提供更加explainable和effective的正负样本。 首先,观察训练过程中anchor positive以及anchor negative对之间的相似度变化 然后,通过改变MoCo中的momentum值,观察相似度变化对性能的影响 ...
2021-08-26 11:17 0 199 推荐指数:
动机 本文是2022年WWW的一篇论文。用户与物品的交互通常由多种意图驱使,但是这些意图通常是潜在的,为了研究意图对序列推荐的作用,作者提出了一个通用范式ICL,它的核心思想是学习到用户的意图并通过 ...
目录: 相关链接 方法亮点 相关工作 方法细节 实验结果 总结与收获 相关链接 论文:https://arxiv.org/abs/1803.020 ...
Motivation 作者们构建了一种用于视觉表示的对比学习简单框架 SimCLR,它不仅优于此前的所有工作,也优于最新的对比自监督学习算法, 而且结构更加简单:这个结构既不需要专门的架构, ...
Feature Distillation With Guided Adversarial Contrast ...
[论文阅读笔记] node2vec:Scalable Feature Learning for Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 由于DeepWalk的随机游走是完全无指导的随机采样,即随机游走不可控。本文 ...
Methodology 作者提出TIMAM (Text-Image Modality Adversarial Matching)方法,比较简洁明了,具体包含三个部分: (1)特征提取器: 文 ...
论文源址:https://arxiv.org/abs/1505.04366 tensorflow代码:https://github.com/fabianbormann/Tensorflow ...
Introduction 每个行人图片都会有视角、姿态等状态信息,虽然自身不带标签,但可以预测这些状态信息作为伪标签,如下图: 由于无监督学习通常存在结果出错的问题,一些未标签的样本会偏离正确 ...