Fisher判别式(LDA) 简介 上面从贝叶斯公式出发,得到了线性判别分析的公式,这里从另外一个角度来看线性判别分析,也就是常说的Fisher判别式。其实Fisher判别式就是线性判别分析(LDA),只是在讨论Fisher判别式的时候,更侧重于LDA的数据降维的能力。 在应用统计学 ...
前言 判别式法求值域,使用的频度不是很高,但是其原理需要注意,其常与分式型函数有关。 原理解析 求函数 f x cfrac x x x x 的值域。 分析:观察这个分式函数的结构特征,注意到函数的定义域为 R ,将函数转化为以 x 为未知数的一元二次方程 此时的因变量 y 看成系数方程的对应系数 , y x y x y 由于这个函数不是空函数,即这个方程一定是有解的,分类讨论如下: circ . ...
2021-08-25 14:36 0 730 推荐指数:
Fisher判别式(LDA) 简介 上面从贝叶斯公式出发,得到了线性判别分析的公式,这里从另外一个角度来看线性判别分析,也就是常说的Fisher判别式。其实Fisher判别式就是线性判别分析(LDA),只是在讨论Fisher判别式的时候,更侧重于LDA的数据降维的能力。 在应用统计学 ...
生成式模型(Generative Model)与判别式模型(Discrimitive Model)是分类器常遇到的概念,它们的区别在于: 对于输入x,类别标签y: 生成式模型估计它们的联合概率分布P(x,y) 判别式模型估计条件概率分布P(y|x) 生成式模型可以根据贝叶斯公式 ...
产生式模型(Generative Model)与判别式模型(Discrimitive Model)是分类器常遇到的概念,它们的区别在于: 对于输入x,类别标签y:产生式模型估计它们的联合概率分布P(x,y)判别式模型估计条件概率分布P(y|x)产生式模型可以根据贝叶斯公式得到判别式模型,但反过 ...
概率P(Y|X); 对于判别式模型来说求得P(Y|X),对未见示例X,根据P(Y|X)可以求得标 ...
生成式模型 P(X,Y)对联合概率进行建模,从统计的角度表示数据的分布情况,刻画数据是如何生成的,收敛速度快。 • 1. 判别式分析 • 2. 朴素贝叶斯Native Bayes • 3. 混合高斯型Gaussians • 4. K近邻KNN • 5. 隐马尔科夫模型HMM • 6. 贝叶斯网络 ...
生成式模型 P(X,Y)对联合概率进行建模,从统计的角度表示数据的分布情况,刻画数据是如何生成的,收敛速度快。• 1. 判别式分析• 2. 朴素贝叶斯Native Bayes• 3. 混合高斯型Gaussians• 4. K近邻KNN• 5. 隐马尔科夫模型HMM• 6. 贝叶斯网络• 7. ...
有监督学习回归模型中,我们利用训练集直接对条件概率p(y|x;θ)建模,例如logistic回归就利用hθ(x) = g(θTx)对p(y|x;θ)建模(其中g(z)是sigmoid函数)。假设 ...
1. 简介 生成式模型(generative model)会对\(x\)和\(y\)的联合分布\(p(x,y)\)进行建模,然后通过贝叶斯公式来求得\(p(y|x)\), 最后选取使得\(p(y|x)\)最大的\(y_i\). 具体地, \(y_{*}=arg \max_{y_i}p(y_i ...