原文:9、改善深层神经网络之正则化、Dropout正则化

首先我们理解一下,什么叫做正则化 目的角度:防止过拟合 简单来说,正则化是一种为了减小测试误差的行为 有时候会增加训练误差 。我们在构造机器学习模型时,最终目的是让模型在面对新数据的时候,可以有很好的表现。当你用比较复杂的模型比如神经网络,去拟合数据时,很容易出现过拟合现象 训练集表现很好,测试集表现较差 ,这会导致模型的泛化能力下降,这时候,我们就需要使用正则化,降低模型的复杂度。 一 神经网路 ...

2021-08-20 14:24 0 109 推荐指数:

查看详情

TensorFlow之DNN(三):神经网络正则化方法(Dropout、L2正则化、早停和数据增强)

这一篇博客整理用TensorFlow实现神经网络正则化的内容。 深层神经网络往往具有数十万乃至数百万的参数,可以进行非常复杂的特征变换,具有强大的学习能力,因此容易在训练集上过拟合。缓解神经网络的过拟合问题,一般有两种思路,一种是用正则化方法,也就是限制模型的复杂度,比如Dropout、L1 ...

Fri Apr 26 00:10:00 CST 2019 0 2533
DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试、正则化以及优化--Week1深度学习的实用层面

更多笔记请火速前往 DeepLearning.ai学习笔记汇总 本周我们将学习如何配置训练/验证/测试集,如何分析方差&偏差,如何处理高偏差、高方差或者二者共存的问题,如何在神经网络中应用不同的正则化方法(如L2正则化Dropout),梯度检测。 一、训练/验证/测试集 ...

Mon Sep 11 01:13:00 CST 2017 0 6443
1-6 dropout 正则化

dropout 正则化Dropout Regularization) 除了L2正则化,还有一个非常实用的正则化方法——Dropout( 随机失活): 假设你在训练上图这样的神经网络,它存在过拟合,这就是 dropout 所要处理的,我们复制这个神经网络dropout 会遍历网络 ...

Mon Sep 03 07:01:00 CST 2018 0 1582
1.6 dropout正则化

  除了L2正则化,还有一个非常实用的正则化方法----dropout(随机失活),下面介绍其工作原理。 假设你在训练下图左边的这样的神经网络,它存在过拟合情况,这就是dropout所要处理的。我们复制这个神经网络dropout会遍历网络每一层,并设置一个消除神经网络中节点的概率 ...

Fri Apr 13 18:06:00 CST 2018 0 1014
聊聊神经网络中的正则化

https://zhuanlan.zhihu.com/p/36794078 如何减少泛化误差,是机器学习的核心问题。这篇文章首先将从六个角度去探讨什么是泛化能力,接着讲述有那些提高泛化能力的方法,这些正则化方法可以怎样进行分类,最后会通过讲述一篇论文,来说明目前的正则化方法在解释 ...

Mon May 18 18:49:00 CST 2020 0 4278
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM