本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/nn_layers_convolution.py 这篇文章主要介绍了 PyTorch 中常用的卷积层,包括 3 个部分。 1D/2D/3D ...
卷积的模块在PyTorch中分为一维 二维和三维。在函数名上的体现是 d d d。 一维卷积层,输入的尺度是 N, C in,L in ,输出尺度 N,C out,L out 。一维卷积一般用于文本数据,只对宽度进行卷积,对高度不卷积。 二维卷积层, 输入的尺度是 N, C in,H,W ,输出尺度 N,C out,H out,W out in channels int 输入信号的通道 out c ...
2021-08-18 21:41 0 123 推荐指数:
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/nn_layers_convolution.py 这篇文章主要介绍了 PyTorch 中常用的卷积层,包括 3 个部分。 1D/2D/3D ...
莫烦视频网址 这个代码实现了预测和可视化 去掉可视化进行代码简化 ...
上采样(upsampling)一般包括2种方式: Resize,如双线性插值直接缩放,类似于图像缩放,概念可见最邻近插值算法和双线性插值算法——图像缩放 Deconvolution,也叫Transposed Convolution,可见逆卷积的详细解释ConvTranspose2d ...
Pytorch是torch的Python版本,对TensorFlow造成很大的冲击,TensorFlow无疑是最流行的,但是Pytorch号称在诸多性能上要优于TensorFlow,比如在RNN的训练上,所以Pytorch也吸引了很多人的关注。之前有一篇关于TensorFlow实现的CNN可以用 ...
利用VGG-16对Dogs-vs-Cats数据集进行训练,裁剪VGG-16可以获得3x的运算加速和4x的模型减小 简介 puring神经网络是一个古老的idea,具体可以追溯到1990年(与Yan ...
卷积概念 什么是卷积? 以上图为例,中间为卷积核,在输入图像上进行滑动,当滑动到当前位置时,其卷积运算操作是对卷积核所覆盖像素,进行权值和对应位置处像素的乘加: \(\ output= (7*0+7*(-1)+6*0+7*(-1)+7*5+6*(-1)+6*0+6 ...
1.LeNet LeNet是指LeNet-5,它是第一个成功应用于数字识别的卷积神经网络。在MNIST数据集上,可以达到99.2%的准确率。LeNet-5模型总共有7层,包括两个卷积层,两个池化层,两个全连接层和一个输出层。 import torch import ...
卷积神经网络 卷积神经网络(CNN)是深度学习的代表算法之一 。具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类,因此也被称为“平移不变人工神经网络”。随着深度学习理论的提出和数值计算设备的改进,卷积神经网络得到了快速发展,并被应用于 计算机视觉、 自然语言处理等领域 ...