原文:分类分析--决策树(经典决策树、条件推断树)

分类分析 决策树 决策树是数据挖掘领域中的常用模型。其基本思想是对预测变量进行二元分离,从而构造一棵可用于预测新样本单元所属类别的树。两类决策树:经典树和条件推断树。 经典决策树 经典决策树以一个二元输出变量 对应威斯康星州乳腺癌数据集中的良性 恶性 和一组预测变量 对应九个细胞特征 为基础。具体算法如下: 选定一个最佳预测变量将全部样本单元分为两类,实现两类中的纯度最大化 即一类中良性样本单元尽 ...

2021-08-17 16:41 0 349 推荐指数:

查看详情

决策树(一)决策树分类

决策树 与SVM类似,决策树在机器学习算法中是一个功能非常全面的算法,它可以执行分类与回归任务,甚至是多输出任务。决策树的算法非常强大,即使是一些复杂的问题,也可以良好地拟合复杂数据集。决策树同时也是随机森林的基础组件,随机森林在当前是最强大的机器学习算法之一。 在这章我们会先讨论如何使用 ...

Fri Feb 28 01:08:00 CST 2020 0 3651
分类分析--随机森林(基于传统决策树、基于条件推断

分类分析--随机森林 随机森林(random forest)是一种组成式的有监督学习方法。在随机森林中,我们同时生成多个预测模型,并将模型的结果汇总以提升分类准确率。随机森林的算法涉及对样本单元和变量进行抽样,从而生成大量决策树。对每个样本单元来说,所有决策树依次对其进行分类。所有决策树预测类别 ...

Wed Aug 18 00:44:00 CST 2021 0 281
决策树分类

决策树分类   决策树分类归类于监督学习,能够根据特征值一层一层的将数据集进行分类。它的有点在于计算复杂度不高,分类出的结果能够很直观的呈现,但是也会出现过度匹配的问题。使用ID3算法的决策树分类第一步需要挑选出一个特征值,能够将数据集最好的分类,之后递归构成分类。使用信息增益,来得到最佳 ...

Wed Apr 25 05:41:00 CST 2018 0 1088
决策树(分类、回归

是运用于分类以及回归的一种树结构。决策树由节点和有向边组成,一般一棵决策树包含一个根节点、若干内部节点和若干 ...

Fri Nov 27 16:39:00 CST 2020 0 567
经典决策树模型

常用的决策树算法有ID3、C4.5、CART,它们构建树所使用的启发式函数各是什么?除了构建准则之外,它们之间的区别与联系是什么?首先,我们回顾一下这几种决策树构造时使用的准则。 人 年龄 长相 工资 写代码 类别 ...

Fri Apr 03 05:43:00 CST 2020 0 1117
决策树分类算法

数据挖掘系列(6)决策树分类算法 从这篇开始,我将介绍分类问题,主要介绍决策树算法、朴素贝叶斯、支持向量机、BP神经网络、懒惰学习算法、随机森林与自适应增强算法、分类模型选择和结果评价。总共7篇,欢迎关注和交流。   这篇先介绍分类问题的一些基本知识,然后主要讲述决策树算法的原理、实现,最后 ...

Wed Aug 21 01:15:00 CST 2013 0 3597
决策树分类算法

决策树算法是一种归纳分类算法,它通过对 训练集的学习,挖掘出有用的 规则,用于对 新集进行 预测。在其生成过程中,分割时属性选择度量指标是关键。通过属性选择度量,选择出最好的将样本分类的属性。 å³ç­æ åç±»ç®æ³æ¦è¿°" width ...

Wed Oct 23 17:12:00 CST 2019 0 1537
决策树分类原理

上一篇博客我们看了一个决策树分类的例子,但是我们没有深入决策树分类的内部原理。 这节我们讨论的决策树分类的所有特征的特征值都是离散的,明白了离散特征值如何分类的原理,连续值的也不难理解。 决策树分类的核心在于确定那一个特征的那一个特征值分类最有效,可能不同的场景,每个人采用的衡量方法也不一样 ...

Mon Oct 17 23:53:00 CST 2016 0 2175
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM