算法介绍:欧拉筛法是在O(N)线性时间内实现素数筛选的优秀算法。 算法思路:总体上与Eratosthenes筛法类似,也是用较小的数筛去较大的合数。 关键思路在于:每一个合数都保证是被其最小的质因子筛去的,下简称称该条件为线性条件。 结合代码分析: 对每一个数i,无论其是否为质数 ...
素数:因数只有 和它自己的数。只有两个因数的数。 合数:除了素数和 的数。 因数 gt 。 假设现在有一个合数 x 。 x 一定是由若干个小于它的质数组成的 分解质因数 。 Q :如何判断一个数 x 是不是素数 如果 x 只有两个因数 和 x 说明它是素数。 假如说 x 是合数,那么 x 除了 和 x 这两个因数必定至少还有一个因数 y 。那么 y x 。那 y 有三种情况: begin case ...
2021-08-13 10:14 2 89 推荐指数:
算法介绍:欧拉筛法是在O(N)线性时间内实现素数筛选的优秀算法。 算法思路:总体上与Eratosthenes筛法类似,也是用较小的数筛去较大的合数。 关键思路在于:每一个合数都保证是被其最小的质因子筛去的,下简称称该条件为线性条件。 结合代码分析: 对每一个数i,无论其是否为质数 ...
目录 Bases 筛法 Code View Bases 这里给出的筛法是以线性筛素数的方法为基础的。 利用了欧拉函数是积性函数的性质:对于任意互质的数\(a\),\(b\),有\(f(a*b)=f(a)*f(b)\) 筛法 类比于线性筛素数 ...
前言 蒟蒻最近准备狂补数学啦TAT 基于筛素数,可以同时快速求出欧拉函数。于是蒟蒻准备从这里入手,整理一下实现的思路。 筛素数及其一种改进写法 传统筛素数的做法(埃式筛)是,利用已知的素数,去筛掉含有此质因子的合数,十分巧妙。由于不是本文的重点,就只贴一下代码吧 复杂度不会证 ...
前置知识 完全剩余系 百度百科: 从模n的每个剩余类中各取一个数,得到一个由n个数组成的集合,叫做模n的一个完全剩余系。 简单点说,n的完全剩余系就是0到n-1的集合。 缩剩余系 ...
定义 记一个排列 \(P\) 的升高为 \(k\) 当且仅当存在 \(k\) 个位置 \(i\) 使得 \(P_i<P_{i+1}\)。 那么定义欧拉数 \(\left\langle\begin{matrix}n\\k\end{matrix}\right\rangle\) 表示长度 ...
欧拉数学习笔记 定义 定义\(\left<\begin{matrix}n\\i\end{matrix}\right>\)为长度为\(n\)的排列\(p\),满足\(p_j<p_{j+1}\)的数目为\(i\)的排列数,也就是欧拉数。 求法 首先可以考虑dp转移 ...
欧拉筛法求素数 首先,我们知道当一个数为素数的时候,它的倍数肯定不是素数。所以我们可以从2开始通过乘积筛掉所有的合数。 将所有合数标记,保证不被重复筛除,时间复杂度为O(n)。代码比较简单↓_↓ if(i % prime[j] == 0) break;←_←这一步 ...
欧拉公式: \[e^{i\theta}=\cos \theta + i \sin \theta \] 证明一 令 \[f(\theta)=\frac{e^{i\theta}}{\cos \theta + i \sin \theta} \] 对 \(f(\theta ...