均方差损失函数mse_loss()与交叉熵损失函数cross_entropy() 1.均方差损失函数mse_loss() 均方差损失函数是预测数据和原始数据对应点误差的平方和的均值。 \[MSE=\frac{1}{N}( y^`−y)^2 \] N为样本个数,y ...
交叉熵 cross entropy :用于度量两个概率分布间的差异信息。交叉熵越小,代表这两个分布越接近。 函数表示 这是使用softmax作为激活函数的损失函数表示 : 是真实值,是预测值。 命名说明: pred F.softmax logits ,logits是softmax函数的输入,pred代表预测值,是softmax函数的输出。 pred log F.log softmax logits ...
2021-08-10 14:52 0 180 推荐指数:
均方差损失函数mse_loss()与交叉熵损失函数cross_entropy() 1.均方差损失函数mse_loss() 均方差损失函数是预测数据和原始数据对应点误差的平方和的均值。 \[MSE=\frac{1}{N}( y^`−y)^2 \] N为样本个数,y ...
交叉熵损失函数 熵的本质是香浓信息量\(\log(\frac{1}{p})\)的期望 既然熵的本质是香浓信息量\(\log(\frac{1}{p})\)的期望,那么便有 \[H(p)=E[p_i\times\log(\frac{1}{p_i})]=\sum p_i\times ...
1. Cross entropy 交叉熵损失函数用于二分类损失函数的计算,其公式为: 其中y为真值,y'为估计值.当真值y为1时, 函数图形: 可见此时y'越接近1损失函数的值越小,越接近0损失函数的值越大. 当真值y为0时, 函数图形: 可见此时y'越接近0损失 ...
交叉熵损失函数的概念和理解 觉得有用的话,欢迎一起讨论相互学习~ 公式 \[ loss =\sum_{i}{(y_{i} \cdot log(y\_predicted_{i}) +(1-y_{i}) \cdot log(1-y\_predicted_{i}) )} \] 定义 ...
损失函数:交叉熵 交叉熵用于比较两个不同概率模型之间的距离。即先把模型转换成熵这个数值,然后通过数值去定量的比较两个模型之间的差异。 信息量 信息量用来衡量事件的不确定性,即该事件从不确定转为确定时的难度有多大。 定义信息量的函数为: \[f(x):=\text{信息量 ...
交叉熵损失是分类任务中的常用损失函数,但是是否注意到二分类与多分类情况下的交叉熵形式上的不同呢? 两种形式 这两个都是交叉熵损失函数,但是看起来长的却有天壤之别。为什么同是交叉熵损失函数,长的却不一样? 因为这两个交叉熵损失函数对应不同的最后一层的输出:第一个对应的最后一层 ...
【简介】 交叉熵(Cross Entropy)是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息。语言模型的性能通常用交叉熵和复杂度(perplexity)来衡量。交叉熵的意义是用该模型对文本识别的难度,或者从压缩的角度来看,每个词平均要用几个位来编码。复杂度的意义 ...
本篇借鉴了这篇文章,如果有兴趣,大家可以看看:https://blog.csdn.net/geter_CS/article/details/84857220 1、交叉熵:交叉熵主要是用来判定实际的输出与期望的输出的接近程度 2、CrossEntropyLoss()损失函数结合 ...