作者:凌逆战 地址:https://www.cnblogs.com/LXP-Never/p/10763804.html 在看这两个函数之前,我们需要先了解一维卷积(conv1d)和二维卷积(conv2d),二维卷积是将一个特征图在width和height两个方向进行滑动窗口操作,对应 ...
一 前言 空间不变性:我们使用的无论哪种方法都应该和物体的位置无关 局部性:神经网络的底层应该只探索输入图像中的局部区域,而不考虑图像远处区域的内容,这就是 局部性 原则 平移不变性:不管出现在图像中的哪个位置,神经网络的底层应该对相同的图像区域做类似的相应 卷积神经网络 convolutional neural network :是含有卷积层 convolutional layer 的神经网络 ...
2021-08-03 20:58 0 118 推荐指数:
作者:凌逆战 地址:https://www.cnblogs.com/LXP-Never/p/10763804.html 在看这两个函数之前,我们需要先了解一维卷积(conv1d)和二维卷积(conv2d),二维卷积是将一个特征图在width和height两个方向进行滑动窗口操作,对应 ...
一维卷积只在一个维度上进行卷积操作,而二维卷积会在二个维度上同时进行卷积操作。 转载自:https://www.cnblogs.com/LXP-Never/p/10763804.html 一维卷积:tf.layers.conv1d() 一维卷积常用于序列数据,如自然语言处理领域 ...
由于计算机视觉的大红大紫,二维卷积的用处范围最广。因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用。 1. 二维卷积 图中的输入的数据维度为14×14">14×1414×14,过滤器大小为5× ...
作者:szx_spark 由于计算机视觉的大红大紫,二维卷积的用处范围最广。因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用。 1. 二维卷积 图中的输入的数据维度为\(14\times 14\),过滤器大小为\(5\times 5\),二者 ...
卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT-CONV-RELU-POOL-FC (1)卷积层:用它来进行特征提取,如下: 输入图像是32*32*3,3是它的深度(即R、G、B),卷积层是一个5*5*3的filter(感受野),这里注意:感受野的深度 ...
卷积神经网络中卷积层和池化层 https://www.cnblogs.com/wj-1314/p/9593364.html 为什么要使用卷积呢? 在传统的神经网络中,比如多层感知机(MLP),其输入通常是一个特征向量,需要人工设计特征,然后将这些特征计算的值组成特征向量,在过去几十年的经验 ...
Mnist是针对小图像块处理的,这篇讲的是针对大图像进行处理的。两者在这的区别还是很明显的,小图像(如8*8,MINIST的28*28)可以采用全连接的方式(即输入层和隐含层直接相连)。但是大图像,这个将会变得很耗时:比如96*96的图像,若采用全连接方式,需要96*96个输入单元,然后如果要训练 ...
Shift 个人觉得BN层的作用是加快网络学习速率,论文中提及其它的优点都是这个优点的副产品。 网上对BN解释 ...