目录 1.极大似然估计 公式推导 2.最小二乘法 可能我从来就没真正的整明白过,只是会考试而已 搞清楚事情的来龙去脉不容易忘记 两个常见的参数估计法: 极大似然估计法和最小二乘法 1.极大似然估计 ref知乎,模型已定,参数未知 ...
损失函数:最小二乘法与极大似然估计法 最小二乘法 对于判断输入是真是假的神经网络: hat y sigmod bigg sum i w i cdot x i b i bigg 为了比较单次结果与标签 y 之间有多少的差距,可以直观的得到: min y hat y 当同时有 n 次结果时: min sum j n y i hat y i 但是绝对值在其定义域内不完全可导,因此可改为如下形式,且不改变 ...
2021-08-02 21:06 0 187 推荐指数:
目录 1.极大似然估计 公式推导 2.最小二乘法 可能我从来就没真正的整明白过,只是会考试而已 搞清楚事情的来龙去脉不容易忘记 两个常见的参数估计法: 极大似然估计法和最小二乘法 1.极大似然估计 ref知乎,模型已定,参数未知 ...
这一部分内容和吴恩达老师的CS229前面的部分基本一致,不过那是很久之前看的了,我尽可能写的像吴恩达老师那样思路缜密。 1.假设 之前我们了解过最大似然估计就是最大化似然函数$$L(\theta) = \sum log(p(x_{i}|\theta))$$ 来确定参数\(\theta ...
对于最小二乘法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值和观测值之差的平方和最小。而对于最大似然法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大。显然,这是从不同原理出发的两种 ...
最小二乘法 基本思想 简单地说,最小二乘的思想就是要使得观测点和估计点的距离的平方和达到最小.这里的“二乘”指的是用平方来度量观测点与估计点的远近(在古汉语中“平方”称为“二乘”),“最小”指的是参数的估计值要保证各个观测点与估计点的距离的平方和达到最小 θ表示要求的参数,Yi为观测 ...
2) 假设的模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数。然后利用这个模型去预测 ...
1) 极/最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”。例如,我们知道这个分布是正态分布,但是不知道均值和方差;或者是二项分布,但是不知道均值。 最大似然估计(MLE,Maximum ...
第一张图是当模型为一元一次函数时的情况,以及其loss函数(二元二次函数)的图像是如何由函数的子项形成的,以及二元二次函数梯度的不同对学习率的影响。一般来说采用全量梯度下降时函数图像最陡,批量梯度下降次之,随机梯度下降或者说逐样本梯度下降最缓。 第二张图是采用逐样本梯度下降的情况 ...
宝宝问了我一个最小二乘法的算法,我忘记了,巩固了之后来总结一下。 首先先理解最小二乘法: 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可 ...