在介绍马氏距离之前先看下几个概念: 1 方差:标准差的平方,反映了数据集中数据的离散程度 2 协方差:标准差与方差是衡量一维数据的,当存在多维数据时,要知道每个维度的变量之间是否存在关联,就需使用协方差.协方差是衡量多维数据中,变量之间的相关性.若两个变量之间的协方差为正值,则两个变量间存在 ...
马氏距离就是将数据做了旋转,做了方差归一化之后再计算的欧氏距离 马氏距离在欧式距离的基础上增加了 公司中x u表示两个不同的变量 : . xi uj ,欧式距离只有 xi uj ,即相同下标的x u的乘积 . xi ui xj uj 的前面增加了一个系数,这个系数是xi和ui的协方差 协方差表示两个变量的相关性,正相关或负相关 所以,使用了马氏距离,在不同的坐标维度上,比如i和j,距离单位不是等长 ...
2021-07-28 20:36 0 157 推荐指数:
在介绍马氏距离之前先看下几个概念: 1 方差:标准差的平方,反映了数据集中数据的离散程度 2 协方差:标准差与方差是衡量一维数据的,当存在多维数据时,要知道每个维度的变量之间是否存在关联,就需使用协方差.协方差是衡量多维数据中,变量之间的相关性.若两个变量之间的协方差为正值,则两个变量间存在 ...
马氏距离(Mahalanobis distance)是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离。它是一种有效的计算两个未知样本集的相似度的方法。与欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重 ...
(from:http://en.wikipedia.org/wiki/Mahalanobis_distance) Mahalanobis distance In statistics, Ma ...
最近项目需要用到直方图相似度,业界惯用马氏距离来测量相似度,因此辗转搜寻马氏距离的知识,找到一个清晰的解释。 马氏距离有些统计上的意味,下式中的S指协方差 与欧式距离的差距来自下图,欧式是强行求距离,而马氏是经过一个寻找最适坐标位置。嘛...有点PCA的韵味在里面 ...
MATLAB求马氏距离(Mahalanobis distance) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1.马氏距离计算公式 d2(xi, xj)=(xi-xj)TS-1(xi-xj) 其中,S是总体的协方差矩阵,而不是样本 ...