第6章 GCN的性质 第5章最后讲到GCN结束的有些匆忙,作为GNN最经典的模型,其有很多性质需要我们去理解。 6.1 GCN与CNN的区别与联系 CNN卷积卷的是矩阵某个区域内的值,图卷积在空域视角下卷的是节点的邻居的值,由此粗略来看二者都是在聚合邻域的信息。 再具体来看一些区别与联系 ...
GCN代码实战 书中 . 节的GCN代码实战做的是最经典Cora数据集上的分类,恰当又不恰当的类比Cora之于GNN就相当于MNIST之于机器学习。 有关Cora的介绍网上一搜一大把我就不赘述了,这里说一下Cora这个数据集对应的图是怎么样的。 Cora有 篇论文,之间有引用关系共 个,每篇论文作为一个节点,引用关系就是节点之间的边。每篇论文有一个 维的特征来表示某个词是否在文中出现过,也就是每个 ...
2021-07-14 13:11 0 614 推荐指数:
第6章 GCN的性质 第5章最后讲到GCN结束的有些匆忙,作为GNN最经典的模型,其有很多性质需要我们去理解。 6.1 GCN与CNN的区别与联系 CNN卷积卷的是矩阵某个区域内的值,图卷积在空域视角下卷的是节点的邻居的值,由此粗略来看二者都是在聚合邻域的信息。 再具体来看一些区别与联系 ...
第3章 卷积神经网络 卷积神经网络CNN是目前应用最广泛的模型之一,具有局部连接、权值共享等特点,是一种深层前馈神经网络。 3.1 卷积与池化 卷积与池化是CNN中的两个核心操作。 3.1.1 信号处理中的卷积 题外话:因为这部分的核心知识应该是属于《信号与系统》这门课程 ...
第2章 神经网络基础 2.1 机器学习基本概念 2.1.1 机器学习的分类 机器学习有以下几种常见的分类方法: 根据训练数据是否有标签可分为: 监督学习:训练数据中每个样本都有标签,通过标签指导模型进行训练 无监督学习:训练数据完全没有标签,算法从数据中发 ...
前面废点话: 终于!来到了GNN最相关的内容!前面四章来说都是一些预备知识,或者说是介绍性的认识的东西,其实和GNN的关系不是特别大。但从这一章开始一上来就是GNN最核心的东西:图信号处理。这部分其实非常关键,但大部分人学的时候可能都会忽视这一点,认为自己可以直接进入GCN的部分,这是 ...
第4章 表示学习 在第2章的时候提到了机器学习的第一步就是提取特征。而表示学习就是自动地从数据中学习特征,并直接用于后续的任务。 4.1 表示学习 4.1.1 表示学习的意义 表示学习要回答3 ...
20.4.29更新 写在前头,由于毕设的需要,我一直在学习图神经网络,看了很多文章解析,以及顶会使用上了gcn的各个领域开源代码,我还是不太懂它为什么会有作为,现在的方法大多数是 第一步查看自己任务怎么能表示成图,一般就是有节点特征和邻接矩阵后,直接上gcn,我感觉 论文的 why部分,讲 ...
关于整图分类,有篇知乎写的很好:【图分类】10分钟就学会的图分类教程,基于pytorch和dgl。下面的代码也是来者这篇知乎。 import dgl import torch from torch._C import device import torch.nn as nn import ...