第3章 卷积神经网络 卷积神经网络CNN是目前应用最广泛的模型之一,具有局部连接、权值共享等特点,是一种深层前馈神经网络。 3.1 卷积与池化 卷积与池化是CNN中的两个核心操作。 3.1.1 信号处理中的卷积 题外话:因为这部分的核心知识应该是属于《信号与系统》这门课程 ...
前面废点话: 终于 来到了GNN最相关的内容 前面四章来说都是一些预备知识,或者说是介绍性的认识的东西,其实和GNN的关系不是特别大。但从这一章开始一上来就是GNN最核心的东西:图信号处理。这部分其实非常关键,但大部分人学的时候可能都会忽视这一点,认为自己可以直接进入GCN的部分,这是错误的。入门GCN最劝退的地方其实就是拉普拉斯和傅里叶变换那里,当然没懂的话也可以对着DGL或者PyG这两个轮子 ...
2021-07-14 01:39 0 334 推荐指数:
第3章 卷积神经网络 卷积神经网络CNN是目前应用最广泛的模型之一,具有局部连接、权值共享等特点,是一种深层前馈神经网络。 3.1 卷积与池化 卷积与池化是CNN中的两个核心操作。 3.1.1 信号处理中的卷积 题外话:因为这部分的核心知识应该是属于《信号与系统》这门课程 ...
第2章 神经网络基础 2.1 机器学习基本概念 2.1.1 机器学习的分类 机器学习有以下几种常见的分类方法: 根据训练数据是否有标签可分为: 监督学习:训练数据中每个样本都有标签,通过标签指导模型进行训练 无监督学习:训练数据完全没有标签,算法从数据中发 ...
第4章 表示学习 在第2章的时候提到了机器学习的第一步就是提取特征。而表示学习就是自动地从数据中学习特征,并直接用于后续的任务。 4.1 表示学习 4.1.1 表示学习的意义 表示学习要回答3个问题: 如何判断一个表示比另一个表示更好? 如何挖掘这些表示? 使用什么样的目标 ...
第6章 GCN的性质 第5章最后讲到GCN结束的有些匆忙,作为GNN最经典的模型,其有很多性质需要我们去理解。 6.1 GCN与CNN的区别与联系 CNN卷积卷的是矩阵某个区域内的值,图卷积在空域视角下卷的是节点的邻居的值,由此粗略来看二者都是在聚合邻域的信息。 再具体来看一些区别与联系 ...
图数据(0,1板块) 目录: 0、引入 1、图数据 2、图卷积神经网络综述 3、图卷积神经网络的实践 0.引入——卷积神经网络到图数据 \(\qquad\)卷积神经网络的发展极大促进了深度学习的发展,广泛应用于图像识别和自然语言处理领域,卷积神经网络几乎能做到将很多问题毕其功于一役 ...
GCN代码实战 书中5.6节的GCN代码实战做的是最经典Cora数据集上的分类,恰当又不恰当的类比Cora之于GNN就相当于MNIST之于机器学习。 有关Cora的介绍网上一搜一大把我就不赘述了,这里说一下Cora这个数据集对应的图是怎么样的。 Cora有2708篇论文,之间有引用关系 ...
卷积神经网络(CNN)是一种具有局部连接、权重共享等特性的深层前馈神经网络。 卷积神经网络最早主要是用来处理图像信息。在用全连接前馈网络来处理图像时,会存在以下两个问题: (1)参数太多:随着隐藏层神经元数量的增多,参数的规模也会急剧增加。这会导致整个神经网络的训练效率非常低,也很容易出现 ...
以下内容来自 https://zhuanlan.zhihu.com/p/37091549 为什么有图卷积神经网络(引言,可跳过) 自2012年以来,深度学习在计算机视觉以及自然语言处理两个领域取得了巨大的成功。和传统方法相比,它好在哪里呢? 假设有一张图,要做分类,传统方法需要手动提取 ...