Pytorch | Pytorch框架中模型和数据的gpu和cpu模式: model.to(device), model.cuda(), model.cpu(), DataParallel 转载自:https://blog.csdn.net/iLOVEJohnny/article ...
这篇文章主要介绍了pytorch中的model model.to device 使用说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教 这代表将模型加载到指定设备上。 其中,device torch.device cpu 代表的使用cpu,而device torch.device cuda 则代表的使用GPU。 当我们指定了设备之后,就需要将模型加载到相应设备中 ...
2021-07-10 22:22 0 247 推荐指数:
Pytorch | Pytorch框架中模型和数据的gpu和cpu模式: model.to(device), model.cuda(), model.cpu(), DataParallel 转载自:https://blog.csdn.net/iLOVEJohnny/article ...
model.train()将模型设置为训练状态,作用:使Dropout,batchnorm知道后有不同表现(具体参考Dropout,batchnorm源码),只有这两个关心True or False。 将模型设置为测试状态有两种方法: 1.model.train(mode=False ...
目录 网络定义 model.named_children 返回名字 和 操作 model.modules() 可用于参数初始化 其他的可以参考: model.parameters() || torch.optim.SGD(params, lr ...
model.train() :启用 BatchNormalization 和 Dropout model.eval() :不启用 BatchNormalization 和 Dropout 参考: https://pytorch.org/docs/stable/nn.html ...
,用model.modules()会遍历所有层 参考链接:https://discuss.pytorch.org/t/modul ...
1、model.named_parameters(),迭代打印model.named_parameters ...
model.train() tells your model that you are training the model. So effectively layers like dropout, batchnorm etc. which behave different ...
在pytorch中,即使是有GPU的机器,它也不会自动使用GPU,而是需要在程序中显示指定。调用model.cuda(),可以将模型加载到GPU上去。这种方法不被提倡,而建议使用model.to(device)的方式,这样可以显示指定需要使用的计算资源,特别是有多个GPU的情况下。 ...