一.简介 xgboost在集成学习中占有重要的一席之位,通常在各大竞赛中作为杀器使用,同时它在工业落地上也很方便,目前针对大数据领域也有各种分布式实现版本,比如xgboost4j-spark,xgboost4j-flink等。xgboost的基础也是gbm,即梯度提升模型,它在此基础上做了进一步 ...
一.损失函数 这一节对xgboost回归做介绍,xgboost共实现了 种类型的回归,分别是squarederror logistic poisson gamma tweedie回归,下面主要对前两种进行推导实现,剩余三种放到下一节 squarederror 即损失函数为平方误差的回归模型: L y, hat y frac y hat y 所以一阶导和二阶导分别为: frac partial L ...
2021-07-04 19:42 0 162 推荐指数:
一.简介 xgboost在集成学习中占有重要的一席之位,通常在各大竞赛中作为杀器使用,同时它在工业落地上也很方便,目前针对大数据领域也有各种分布式实现版本,比如xgboost4j-spark,xgboost4j-flink等。xgboost的基础也是gbm,即梯度提升模型,它在此基础上做了进一步 ...
一.原理介绍 这一节将树模型的预测与概率分布相结合,我们假设树模型的输出服从某一分布,而我们的目标是使得该输出的概率尽可能的高,如下图所示 而概率值最高的点通常由分布中的某一个参数(通常是均值 ...
---恢复内容开始--- Softmax Regression 可以看做是 LR 算法在多分类上的推广,即类标签 y 的取值大于或者等于 2。 假设数据样本集为:$\left \{ \left ( ...
一.利用回归树实现分类 分类也可以用回归树来做,简单说来就是训练与类别数相同的几组回归树,每一组代表一个类别,然后对所有组的输出进行softmax操作将其转换为概率分布,然后再通过交叉熵或者KL一类的损失函数求每颗树相应的负梯度,指导下一轮的训练,以三分类为例,流程 ...
一. 逻辑回归 在前面讲述的回归模型中,处理的因变量都是数值型区间变量,建立的模型描述是因变量的期望与自变量之间的线性关系。比如常见的线性回归模型: 而在采用回归模型分析实际问题中,所研究的变量往往不全是区间变量而是顺序变量或属性变量,比如二项分布问题。通过分析年龄、性别、体质指数、平均 ...
目录 1 多元线性回归 2 多元线性回归的Python实现 2.1 手动实现 2.1.1 导入必要模块 2.1.2 加载数据 2.1.3 计算系数 2.1.4 预测 2.2 ...
目录 1. 线性模型 2. 线性回归 2.1 一元线性回归 3. 一元线性回归的Python实现 3.1 使用 stikit-learn 3.1.1 导入必要模块 3.1.2 使用 ...
目录 1. 对数几率回归 1.1 求解 ω 和 b 2. 对数几率回归进行垃圾邮件分类 2.1 垃圾邮件分类 2.2 模型评估 混淆举证 精度 交叉验证精度 ...