信息熵 信息量和信息熵的概念最早是出现在通信理论中的,其概念最早是由信息论鼻祖香农在其经典著作《A Mathematical Theory of Communication》中提出的。如今,这些概念不仅仅是通信领域中的基础概念,也被广泛的应用到了其他的领域中,比如机器学习。 信息量用来 ...
一 信息熵 若一个离散随机变量 X 的可能取值为 X x , x ,...,x n ,且对应的概率为: p x i p X x i 那么随机变量 X 的熵定义为: H X sum i n p x i logp x i 规定当 p x i 时, H X 。 通过公式可以看出,若随机变量 X 的取值等概率分布,即 p x i p x j , i neq j 时, H X 最大。 直观理解:信息熵表达的 ...
2021-06-29 21:49 0 165 推荐指数:
信息熵 信息量和信息熵的概念最早是出现在通信理论中的,其概念最早是由信息论鼻祖香农在其经典著作《A Mathematical Theory of Communication》中提出的。如今,这些概念不仅仅是通信领域中的基础概念,也被广泛的应用到了其他的领域中,比如机器学习。 信息量用来 ...
信息熵、交叉熵、KL散度、JS散度、Wasserstein距离 交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。以前做一些分类问题的时候,没有过多的注意,直接调用现成的库,用起来也比较方便。最近开始研究起对抗生成网络(GANs),用到了交叉熵 ...
参考:https://blog.csdn.net/b1055077005/article/details/100152102 (文中所有公式均来自该bolg,侵删) 信息奠基人香农(Shannon)认为“信息是用来消除随机不确定性的东西”,我们需要寻找一个量来衡量信息的有用程度。首先要先明确 ...
自信息 自信息I表示概率空间中的单一事件或离散随机变量的值相关的信息量的量度。它用信息的单位表示,例如bit、nat或是hart,使用哪个单位取决于在计算中使用的对数的底。如下图: 对数以2为底,单位是比特(bit ...
熵、交叉熵、KL散度、JS散度 一、信息量 事件发生的可能性大,信息量少;事件发生的可能性小,其信息量大。 即一条信息的信息量大小和它的不确定性有直接的关系,比如说现在在下雨,然后有个憨憨跟你说今天有雨,这对你了解获取天气的信息没有任何用处。但是有人跟你说明天可能也下雨,这条信息就比前一条 ...
用的交叉熵(cross entropy)损失,并从信息论和贝叶斯两种视角阐释交叉熵损失的内涵。 # ...
一. 信息论背景 信息论的研究内容,是对一个信号包含信息的多少进行量化。所采用的量化指标最好满足两个条件: (1)越不可能发生的事件包含的信息量越大; (2)独立事件有增量的信息(就是几个独立事件同时发生的信息量等于每一个信息量的和)。 遵循以上原则,定义一个事件$\mathsf{x ...
交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量真实分布p与当前训练得到的概率分布q有多么大的差异。 相对熵(relative entropy)就是KL散度(Kullback–Leibler ...