问题:设\(\displaystyle f\left( x,y \right)\)是定义在区域\(\displaystyle 0\leqslant x\leqslant 1\),\(\displays ...
问题:设 displaystyle f left right , displaystyle f left right 存在,常数 displaystyle m gt ,求证: lim n rightarrow infty sum i n f left frac i m n m right frac m f left right 过程如下:根据带 text Peano 余项的 text Taylor ...
2021-06-27 12:17 0 199 推荐指数:
问题:设\(\displaystyle f\left( x,y \right)\)是定义在区域\(\displaystyle 0\leqslant x\leqslant 1\),\(\displays ...
在日常生活中,我们常常遇到要知道某一天是星期几的问题。有时候,我们还想知道历史上某一天是星期几。比如: “你出生的那一天是星期几啊?” “明年五一是不是星期天?我去找你玩?” 通常,解决这个问题 ...
1、为什么要学泰勒公式? 泰勒公式刚碰到时,总觉得一头雾水,一大串数字,把一个简简单单的初等函数描述出来,这样岂不是很复杂?在进一步理解泰勒公式之后,我觉得泰勒公式还是非常有用的,单单就我个人认为,当然涉及到其它许多领域也有它的身影,只不过就笔者一个备考的人来说,目前只认识到他在数学方面上的意义 ...
也许更好的阅读体验 泰勒(Taylor)公式 \(\begin{aligned}f\left( x\right) =\sum ^{\infty }_{i=0}\dfrac {f^{(i)}\left( x_{0}\right) }{i!}\left( x-x_{0}\right) ^{i ...
泰勒公式是高等数学中的一个非常重要的内容,它将一些复杂的函数逼近近似地表示为简单的多项式函数,泰勒公式这种化繁为简的功能, 使得它成为分析和研究许多数学问题的有力工具。 定义:函数 $f(x)$ 在含 $x_{0}$ 的某个开区间 $(a,b)$ 内具有直到 $n + 1$ 阶导数,则对任意 ...
用多个变量的一个多项式来近似表达一个给定的多元函数,并能具体的估算出误差的大小。 定义:函数 $f(x,y)$ 在含 $(x_{0},y_{0})$ 的某一邻域内连续且有直到 $n+1$ 阶的连续偏 ...
链接1:https://www.matongxue.com/madocs/7.html 链接2:https://zhuanlan.zhihu.com/p/74938375 泰勒公式一句话描述:就是用多项式函数去逼近光滑 ...
目录 1. 上、下确界的若干结论 1.1 与集合的上、下确界有关的结论 1.2 与函数的上、下确界有关的结论 2. 上、下极限的定义 1. 上、下确界的若干结论 1.1 与集合的上、下确界有关的结论 命题1. 设 ...