主成分分析法(PCA)原理和步骤 主成分分析(Principal Component Analysis,PCA)是一种多变量统计方法,它是最常用的降维方法之一,通过正交变换将一组可能存在相关性的变量数据,转换为一组线性不相关的变量,转换后的变量被称为主成分。 可以使用两种方法进行 PCA,分别 ...
看了很多主成分分析的的解释,都太理论了,完全get不到点,我又不是搞数学的。看不懂看不懂。 打算写一下主成分分析的步骤帮助我理解这个方法,至于里面为什么要用到方差,协方差这个东西,你需要去看看相关的文献说明,比如要解释为什么协方差矩阵的特征值最大的前 k 个特征向量就是k维理想特征,我看到的有三个理论:分别是最大方差理论 最小错误理论和坐标轴相关度理论。 这儿贴两篇文章,这篇的内容也主要来源于这两 ...
2021-06-12 10:17 0 207 推荐指数:
主成分分析法(PCA)原理和步骤 主成分分析(Principal Component Analysis,PCA)是一种多变量统计方法,它是最常用的降维方法之一,通过正交变换将一组可能存在相关性的变量数据,转换为一组线性不相关的变量,转换后的变量被称为主成分。 可以使用两种方法进行 PCA,分别 ...
主成份分析: 主成份分析是最经典的基于线性分类的分类系统。这个分类系统的最大特点就是利用线性拟合的思路把分布在多个维度的高维数据投射到几个轴上。如果每个样本只有两个数据变量,这种拟合就是 其中和分别是样本的两个变量,而和则被称为 ...
主成分分析法 目录 主成分分析法 一、主成分分析的理解 二、使用梯度上升法求解PCA 三、求数据的前n个主成分 四、将高维数据向低维数据映射 五、scikit-learn中的PCA 六、对真实数据集MNIST使用 ...
主成分分析法PCA的原理及计算 主成分分析法 主成分分析法(Principal Component Analysis),简称PCA,其是一种统计方法,是数据降维,简化数据集的一种常用的方法 它本身是一个非监督学习的算法,作用主要是用于数据的降维,降维的意义是挺重要的,除了显而易见的通过降维 ...
主成分分析(Principal Component Analysis, PCA),将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。 在实际生活中,为了全面的分析问题,往往提出很多相关的变量因素,因为每个变量都在不同程度上反映了这个课题的某些信息。 指标/变量:在实证 ...
html { font-family: sans-serif; -ms-text-size-adjust: 100%; -webkit-text-size-adjust: 10 ...
个)。可起到数据压缩的作用(因而也就存在数据丢失)。 2.PCA,即主成分分析法,属于降维的一种方法 ...