近日,对近些年在NLP领域很火的BERT模型进行了学习,并进行实践。今天在这里做一下笔记。 本篇博客包含下列内容: BERT模型简介 概览 BERT模型结构 BERT项目学习及代码走读 项目基本特性介绍 代码走读&要点归纳 基于BERT模型实现垃圾邮件分类 ...
一. 前言 由于最近有一个邮件分类的工作需要完成,研究了一下基于SVM的垃圾邮件分类模型。参照这位作者的思路 https: blog.csdn.net qq article details ,使用trec c这个公开的垃圾邮件语料库 https: plg.uwaterloo.ca gvcormac treccorpus 作为数据进行建模。并对代码进行优化,提升训练速度。 工作过程如下: ,数据预处 ...
2021-06-11 21:27 0 1461 推荐指数:
近日,对近些年在NLP领域很火的BERT模型进行了学习,并进行实践。今天在这里做一下笔记。 本篇博客包含下列内容: BERT模型简介 概览 BERT模型结构 BERT项目学习及代码走读 项目基本特性介绍 代码走读&要点归纳 基于BERT模型实现垃圾邮件分类 ...
1. 数据集说明 trec06c是一个公开的垃圾邮件语料库,由国际文本检索会议提供,分为英文数据集(trec06p)和中文数据集(trec06c),其中所含的邮件均来源于真实邮件保留了邮件的原有格式和内容,下载地址:https://plg.uwaterloo.ca/~gvcormac ...
1. 数据准备:收集数据与读取 2. 数据预处理:处理数据 3. 训练集与测试集:将先验数据按一定比例进行拆分。 4. 提取数据特征,将文本解析为词向量 。 5. 训练模型:建立模型,用训练数据训练模型。即根据训练样本集,计算词项出现的概率P(xi|y),后得到各类下词汇出现概率的向量 ...
1. 前言 《朴素贝叶斯算法(Naive Bayes)》,介绍了朴素贝叶斯原理。本文介绍的是朴素贝叶斯的基础实现,用来垃圾邮件分类。 2. 朴素贝叶斯基础实现 朴素贝叶斯 (naive Bayes) 法是基于贝叶斯定理与特征条件独立假设的分类的方法。对于给定的训练数据集,首先基于特征条件独立 ...
------------------邮件数据预处理------------------ 一:邮件数据读取 二:预处理操作 (一)预处理内容 预处理主要包括以下9个部分: (二)预处理实现读取邮件 (三)将Email转化为词 ...
目将是0。一旦我们所有的X向量准备好了,我们就训练我们的算法,最后,我们可以用它来分类一封电子邮件是否 ...
学习了那么多机器学习模型,一切都是为了实践,动手自己写写这些模型的实现对自己很有帮助的,坚持,共勉。本文主要致力于总结贝叶斯实战中程序代码的实现(python)及朴素贝叶斯模型原理的总结。python的numpy包简化了很多计算,另外本人推荐使用pandas做数据统计。 一 引言 ...
1.读取 # 读取数据集 def read_dataset(): file_path =r'C:\Users\Administrator\PycharmProj ...