原文:手撸机器学习算法 - 非线性问题

系列文章目录: 感知机 线性回归 非线性问题 多项式回归 岭回归 算法介绍 前面两篇分别介绍了分类与回归问题中各自最简单的算法,有一点相同的是它们都是线性的,而实际工作中遇到的基本都是非线性问题,而能够处理非线性问题是机器学习有实用价值的基础 首先,非线性问题在分类与回归中的表现是不同的,在回归问题中,通常指的是无法通过线性模型很好的拟合,而在分类问题中,非线性问题指的是无法通过超平面进行正确的分 ...

2021-06-15 15:20 1 1193 推荐指数:

查看详情

机器学习算法 - 线性回归

系列文章目录: 感知机 线性回归 非线性问题 多项式回归 岭回归 如果说感知机是最最最简单的分类算法,那么线性回归就是最最最简单的回归算法,所以这一篇我们就一起来快活的用两种姿势线性回归吧; 算法介绍 线性回归通过超平面拟合数据点,经验误差一般使用MSE ...

Sat Jun 12 02:02:00 CST 2021 1 293
机器学习算法 - 岭回归

系列文章目录: 感知机 线性回归 非线性问题 多项式回归 岭回归 算法介绍 今天我们来一起学习一个除了线性回归、多项式回归外最最最简单的回归算法:岭回归,如果用等式来介绍岭回归,那么就是:\(岭回归 = 多项式回归 + 惩罚项\),\(多项式回归 = 线性回归 ...

Fri Jun 18 18:00:00 CST 2021 1 318
机器学习算法 - 逻辑回归

系列文章目录: 感知机 线性回归 非线性问题 多项式回归 岭回归 逻辑回归 算法介绍 今天我们一起来学习使用非常广泛的分类算法:逻辑回归,是的,你没有看错,虽然它名字里有回归,但是它确实是个分类算法,作为除了感知机以外,最最最简单的分类算法,下面我们把它与感知机 ...

Fri Jun 25 00:05:00 CST 2021 1 265
机器学习算法 - 感知机

系列文章目录: 感知机 线性回归 非线性问题 多项式回归 岭回归 感知机(Perceptron)是最最最简单的机器学习算法(分类),同时也是深度学习中神经元的基础组件; 算法介绍 感知机与逻辑回归、SVM类似的是同样是构建一个分割超平面来实现对数据点的分类,不同点 ...

Fri Jun 11 19:59:00 CST 2021 1 359
机器学习线性模型和非线性的区别

机器学习线性模型和非线性的区别 一、总结 一句话总结: 1)、线性非线性的区别是是否可以用直线将样本划分开(这个观点是对的) 2)、线性模型可以是用曲线拟合样本,但是分类的决策边界一定是直线的,例如logistics模型 3)、区分是否为线性模型,主要是看一个乘法式子中自变量x前 ...

Wed Sep 23 06:13:00 CST 2020 0 1164
机器学习中的线性非线性判断

机器学习中的线性非线性判断 说到线性非线性,你的直观理解是不是这样: 但这种直观理解其实不能回答下面这个问题: 那么为什么卷积操作是线性的,而ReLU是非线性的? 很多人对线性的定义不是很清楚。 实际上,线性的定义是: F(ax+y) = aF(x) + F(y), 其中x、y为变量 ...

Wed Apr 25 01:05:00 CST 2018 0 944
机器学习基石》---非线性变换

1 非线性变换 所谓非线性变换,就是把原始的特征做非线性变换,得到一个新的特征,使用这个新的特征来做线性的分类,则对应到原始的特征空间中,相当于做了非线性的分类。非线性变换的好处是,算法将有更多的选择,Ein可以做的更低。 例如使用二次变换: 则Z空间中的一个直线分类边界,对应 ...

Tue Jan 24 19:21:00 CST 2017 0 2132
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM