Abstract 由于之前的监督学习仅针对神经网络中的输出结果进行预测,因此隐藏层特征通常无法学习到3D分割的信息表达,然而这个问题可以通过对中间层的多尺度监督来解决。 在本文中,作者首次 ...
Abstract 基本任务:大规模点云上的语义分割 一方面,为了减少邻近点的歧义,通过充分利用双边结构中的几何和语义特征来增加它们的局部上下文。 另一方面,全面地从多个分辨率中提取点的存在性,并在点级按照自适应融合方法表示特征图,以实现精确的语义分割。 Introduction 文章重点:研究大规模复杂点云的语义分割任务,以识别真实点云场景中每个点的语义标签。 基于投影的 AlaxNet 基于离散 ...
2021-06-08 20:53 1 1222 推荐指数:
Abstract 由于之前的监督学习仅针对神经网络中的输出结果进行预测,因此隐藏层特征通常无法学习到3D分割的信息表达,然而这个问题可以通过对中间层的多尺度监督来解决。 在本文中,作者首次 ...
Abstract 研究了大规模三维点云的有效语义分割问题。 由于依赖昂贵的采样技术和繁重的预处理/后处理步骤,大多数现有方法只能在小规模的点云上进行训练和操作。 本文提出了RandLA ...
论文题目:《BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation》 论文摘要:语义分割同时要求丰富的空间信息和大小不同的感受野。然而,通常我们为了达到实时的推理速度,会降低图像的空间分辨率,从而导致 ...
论文源址:https://arxiv.org/abs/1606.02147 tensorflow github: https://github.com/kwotsin/TensorFlow-EN ...
paper链接:https://arxiv.org/pdf/1812.09953.pdf code链接:https://github.com/YangZhang4065/AdaptationSeg ...
目录 摘要 1、引言 2、相关工作 将点云映射到常规二维或三维栅格(体素) 基于MLPs的点表示学习 基于点卷积的点表示学习 动 ...
持续更新Github: https://github.com/Sophia-11/Awesome-CVPR-Paper CVPR 2021 致力于计算机视觉和模式识别包括颜色检测、跟踪、运动、物体识别、音响和目标检测。 Image-to-image Translation via ...
今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fc ...