https://www.deeplearn.me/1393.html 哑编码概念 先来讲解下哑编码的概念吧,当你的变量不是定量特征的时候是无法拿去进行训练模型的,哑编码主要是针对定性的特征进行处理然后得到可以用来训练的特征 关于定性和定量还是在这里也说明下,举个例子就可以看懂了 定性 ...
处理分类型特征:编码与哑变量 在机器学习中,大多数算法,譬如逻辑回归,支持向量机SVM,k近邻算法等都只能够处理数值型数据,不能处理 文字,在sklearn当中,除了专用来处理文字的算法,其他算法在fifit的时候全部要求输入数组或矩阵,也不能够导 入文字型数据 其实手写决策树和普斯贝叶斯可以处理文字,但是sklearn中规定必须导入数值型 。 然而在现实中,许多标签和特征在数据收集完毕的时候,都 ...
2021-06-09 09:46 0 987 推荐指数:
https://www.deeplearn.me/1393.html 哑编码概念 先来讲解下哑编码的概念吧,当你的变量不是定量特征的时候是无法拿去进行训练模型的,哑编码主要是针对定性的特征进行处理然后得到可以用来训练的特征 关于定性和定量还是在这里也说明下,举个例子就可以看懂了 定性 ...
目录 数据挖掘的五大流程 数据预处理(preprocessing) 数据归一化 数据标准化 缺失值处理 处理离散型特征和非数值型标签 处理连续型特征 二值化 分箱 ...
离散变量标签处理 1.类别变量映射为原始变量 原始数据 1.1 方法1:原始处理方法(将类别变量映射为数值变量) 原始方法2: 1.2 方法2:使用scikit LabelEncoder处理标签变量映射 ...
https://www.deeplearn.me/1389.html 上一篇文章讲解了区间缩放法处理数据,接下来就讲解二值化处理 这个应该很简单了,从字面意思就是将数据分为 0 或者 1,联想到之前图像处理里面二值化处理变为黑白图片 下面还是进入主题吧 首先给出当前的二值化处理公式 ...
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少 ...
目录 数据预处理:离散特征编码方法 无监督方法: 1.序号编码OrdinalEncoder 2.独热编码OneHotEncoder 3.二进制编码BinaryEncoder 4.计数编码 ...
说明:本片博文接上篇博文【 Pandas数据预处理之数据转换(df.map()、df.replace())】 二、哑变量编码 1、什么叫做哑变量? 将类别型特征转化“哑变量矩阵”或是“指标矩阵”,让类别特征转换成数值特征的过程。相当与标签化和OneHOt编码,具体可参考另一篇博文【数据 ...
的无序分类变量,我们在进行数据预处理的时候应该如何进行。 一种很容易想到的方法就是把每个值映射为一个数 ...