,就可以方便地使用 OneFlow 进行分布式训练。这是 OneFlow 区别于其它框架的 最重要特性。 ...
技术背景 分布式和并行计算,在计算机领域是非常重要的概念。对于一些行外人来说,总觉得这是一些很简单的工作,但是如果我们纵观计算机的硬件发展史,从CPU到GPU,再到TPU和华为的昇腾 NPU ,乃至当下的热点量子计算机 QPU ,其实就是一个分布式与并行计算的发展史。从简单的数据并行,到算法并行,到图的并行,最后是量子叠加所带来的物理并行。因此能否做好分布式与并行的技术,很大程度上决定了一个工具的 ...
2021-06-10 10:54 2 1013 推荐指数:
,就可以方便地使用 OneFlow 进行分布式训练。这是 OneFlow 区别于其它框架的 最重要特性。 ...
一. torch.nn.DataParallel ? pytorch单机多卡最简单的实现方法就是使用nn.DataParallel类,其几乎仅使用一行代码net = torch.nn.DataParallel(net)就可让模型同时在多张GPU上训练,它大致的工作过程如下图所示: 在每一个 ...
[翻译] 使用 TensorFlow 进行分布式训练 目录 [翻译] 使用 TensorFlow 进行分布式训练 0x00 摘要 1. 概述 2. 策略类型 2.1 MirroredStrategy ...
没有问题。 2、当使用两台机器进行GPU训练时,报如下错误:WARNING: Open MPI ac ...
一些分布式系统的基本概念 group 进程组。默认情况只有一个组,一个 job 为一个组,也为一个 world world size 全局进程个数 rank 表示进程序号,用于进程间的通讯。rank=0 的主机为 master 节点 local rank 进程 ...
第一篇 pytorch分布式训练[1] 在pytorch 1.6.0,torch.distributed中的功能可以分为三个主要的组件: Distributed Data-Parallel Training(DDP)是一个广泛采用的单程序多数据训练方法。使用DDP,模型会被复制到每个进程 ...
1.初始化进程组dist.init_process_group(backend="nccl")backend是后台利用nccl进行通信 2.使样本之间能够进行通信train_sampler = torch.utils.data.distributed.DistributedSampler ...
分布式训练 ...