Introduction 现有主流方法采用了复杂的骨干网络,参数量大,处理速度慢。因此本文的目标是构建一个计算效率更高、更适合ReID的轻量级网络。 Neural Architecture Search(NAS)被利用来搜索轻量高效的网络,但一般需要非常高昂的计算资源 ...
Introduction Person search任务的目的是:定位并识别目标行人。其包含了两个子任务:行人检测和行人重识别。现有方法主要分为两类:二步检索框架和一步二阶段检索框架。前者先通过目标检测算法定位行人位置,再裁切出行人进行重识别,这类方法比较耗时 后者实现了两种任务的端到端学习,通过ROI对齐层获取行人区域 如Faster RCNN ,这类方法存在密集anchor计算复杂的问题以及超 ...
2021-06-04 20:35 0 292 推荐指数:
Introduction 现有主流方法采用了复杂的骨干网络,参数量大,处理速度慢。因此本文的目标是构建一个计算效率更高、更适合ReID的轻量级网络。 Neural Architecture Search(NAS)被利用来搜索轻量高效的网络,但一般需要非常高昂的计算资源 ...
论文地址:https://arxiv.org/abs/2103.11617 代码地址:https://github.com/daodaofr/AlignPS 前言: 本文针对anchor-free模型用于行人搜索中会出现三个不对齐问题:Scale misalignment,Region ...
Introduction 当下众多方法采用双流网络结构来解决RGB-IR跨模态问题。作者通过研究发现,BN层在学习模态分布中发挥着至关重要的作用。对于每一个BN都要设置是否为分离。ResNet包含了 ...
论文原址:https://arxiv.org/abs/1903.00621 摘要 本文提出了基于无anchor机制的特征选择模块,是一个简单高效的单阶段组件,其可以结合特征金字塔嵌入到单阶段检测器中。FSAF解决了传统基于anchor机制的两个限制:(1)启发式 ...
Introduction 在空间维度上,现有video reid方法局限于把所有帧在相同分辨率下进行特征提取,造成了特征冗余,如图(a)。 在时间维度上,现有方法要么采用long-term要么 ...
持续更新Github: https://github.com/Sophia-11/Awesome-CVPR-Paper CVPR 2021 致力于计算机视觉和模式识别包括颜色检测、跟踪、运动、物体识别、音响和目标检测。 Image-to-image Translation via ...
CornerNethourglass network -> prediction module = corner pooling -> heatmaps + embedding + off ...
anchor-free分支的FASF模型。通过使用较小的推理开销实现对baseline极大的提升,同时在 ...