nn.Linear():用于设置网络中的全连接层,需要注意的是全连接层的输入与输出都是二维张量 一般形状为[batch_size, size],不同于卷积层要求输入输出是四维张量。其用法与形参说明如下: ...
.pytorch 的nn.Linear 参数初始化方法 可以看到不是初始化为 的,那么直接看源码就行了: 可以看到weight是初始化为了kaiming分布,bias初始化为了均匀分布。 ...
2021-05-26 16:14 0 5478 推荐指数:
nn.Linear():用于设置网络中的全连接层,需要注意的是全连接层的输入与输出都是二维张量 一般形状为[batch_size, size],不同于卷积层要求输入输出是四维张量。其用法与形参说明如下: ...
nn.Parameter和F.linear nn.Linear实现细节 ...
class torch.nn.Linear(in_features,out_features,bias = True )[来源] 对传入数据应用线性变换:y = A x+ b 参数: in_features - 每个输入样本的大小 out_features - 每个输出样本的大小 ...
1. nn.Linear() nn.Linear():用于设置网络中的全连接层,需要注意的是全连接层的输入与输出都是二维张量 一般形状为[batch_size, size],不同于卷积层要求输入输出是四维张量。其用法与形参说明如下: in_features ...
函数的默认参数使得函数的调用变得简单。实际上,默认参数的值只在定义时计算一次,因此每次使用默认参数调用函数时,得到的默认参数值是相同的。我们看一个例子。 结果: 三次调用函数得到的默认值是一模一样,而且中间让程序睡眠了1秒,可以排除是程序运行太快的因素,因此这足以说明函数 ...
1.初始化为常量 tf.constant_initializer(value, dtype) 生成一个初始值为常量value的tensor对象 value:指定的常量 dtype:数据类型 tf.zeros_initializer(dtype) 生成一个初始值全为 ...
初始化参数的方法 nn.Module模块对于参数进行了内置的较为合理的初始化方式,当我们使用nn.Parameter时,初始化就很重要,而且我们也可以指定代替内置初始化的方式对nn.Module模块进行补充。 除了之前的.data进行赋值,或者.data.初始化方式外,我们可以使 ...
基于基本数据类型的变量创建的数组: byte short int long double float char boolean 对于基本数据类型为: byte short int long 初始化为 0 对于基本数 ...