欧拉公式: \[e^{i\theta}=\cos \theta + i \sin \theta \] 证明一 令 \[f(\theta)=\frac{e^{i\theta}}{\cos \theta + i \sin \theta} \] 对 \(f(\theta ...
欧拉公式的证明 前言 在数学史上,有一个令人着迷的公式: e i pi 它将数学里最重要的几个数字联系到了一起:两个超越数:自然常数 e ,圆周率 pi ,虚数单位 i 和自然数的单位 ,以及被称为人类伟大发现之一的 。因为它过于完美,所以数学家们评价它是 上帝创造的公式 。 要证明上帝创造的公式了,好激动 证明: 前置知识 : 复数以及三角函数 微积分以及泰勒展开 正式证明: 在证明欧拉公式之 ...
2021-05-01 19:52 2 2173 推荐指数:
欧拉公式: \[e^{i\theta}=\cos \theta + i \sin \theta \] 证明一 令 \[f(\theta)=\frac{e^{i\theta}}{\cos \theta + i \sin \theta} \] 对 \(f(\theta ...
现在,我们通过几种不同的方法来阐述下欧拉公式的证明思想,即证明,e^πi + 1=0.首先指数函数是定义在实数域上的,现在要延拓到复数域上,首先要定义e^i, e^ix是什么,严格地说,这是一种定义,而且,这个定义是合理的.e^ix=cosx+isinx,e是自然对数的底,i是虚数单位 ...
先看这样一个问题:任意给定正整数n,请问在小于等于n的正整数之中,有多少个与n构成互质关系?(比如,在1到8之中,有多少个数与8构成互质关系?) 计算这个值的方法就叫做欧拉函数,以\(φ(n)\)表示。在1到8之中,与8形成互质关系的是1、3、5、7,所以 \(φ(n ...
欧拉定理及其证明[补档] 一.欧拉定理 背景:首先你要知道什么是欧拉定理以及欧拉函数。 下面给出欧拉定理,对于互质的a,p来说,有如下一条定理 \[a^{\phi(p)}\equiv1(mod\;p) \] 这就是欧拉定理 二.剩余系 定义:对于集合\(\{k*m+a|k ...
我真的很逊,所以有错也说不定。 这篇很简,所以看不懂也说不定。 总觉得小满哥讲过这个证明,虽然身为老年健忘选手我大概是不记得什么了。。 欧拉定理:\(a^{\varphi(n)} \equiv 1 \ (mod \ n)\) ,其中 \((a,n) = 1\) 费马小定理:\(a^{p-1 ...
欧拉函数定义:phi(n) = 1到n中与n互质的数的个数 有公式: phi(n) = n* ∏ ( 1 - 1/pi ) 其中p为n的所有质因子,每个质因子只算一次 下面是证明: 1. 当n为质数,显然phi(n) = n-1 2. 当n=p^k ,其中p为素数 与n ...
$ 的时候,欧拉公式可简化成为: $$e^{i\pi} + 1 = 0$$ 如果不了解什么是复数以及复平 ...
1. 欧拉公式的发现 1740年10月8日,欧拉(Leonhard Euler ,1707~1783)写了一封信给他的老师约翰·伯努利(Johann Bernoulli,1667 ~ 1748),信中他提到一个发现,微分方程: 微分方程的解可以用两种方式给出,即: 微分方程 ...