最近工作中遇到了这个问题,检索之后发现这种实现方式挺有意思的,无论是凸多边形还是凹多边形都可以判断。 射线法是用被测点向任意方向(通常为了好算,使其射向右侧)做一条射线,判断射线与多边形的交点。如果交点的数量为奇数,则被测点在多边形内;如果交点的数量为偶数,则被测点在多边形以外。 期间,有些 ...
通过射线法判断点和多边形的位置关系.适用于任意多边形. 射线法:从目标点引出一条射线,查看和多边形有多少个交点.如果交点是奇数个,说明在多边形内部,否则在多边形外部. 在多边形上的情况,在计算中可以算出来,这里不说明这种情况. 图中,假设黑色为引出的射线. 因为在给出坐标的情况下,使用x x 或y y 的射线便于计算交点 其它线段是多边形的边和射线的可能位置情况. 还有两点都在射线的上方或者下方, ...
2021-04-30 15:17 0 216 推荐指数:
最近工作中遇到了这个问题,检索之后发现这种实现方式挺有意思的,无论是凸多边形还是凹多边形都可以判断。 射线法是用被测点向任意方向(通常为了好算,使其射向右侧)做一条射线,判断射线与多边形的交点。如果交点的数量为奇数,则被测点在多边形内;如果交点的数量为偶数,则被测点在多边形以外。 期间,有些 ...
问题描述 现有一个点p(x0,y0),多变形ptPolypon,判断点p是否在多边形内。 算法 判断一个点是否在多边形内,我们可以从该点引出一条水平射线(任意射线都可,但水平便于计算),观察射线与多变形的交点个数,如果交点个数为奇数,则该点在多边形内,如果为 偶数 则在多边形外 ...
依然是计算几何。 射线法判断点与多边形关系原理如下: 从待判断点引出一条射线,射线与多边形相交,如果交点为偶数,则点不在多边形内,如果交点为奇数,则点在多边形内。 原理虽是这样,有些细节还是要注意一下,比如射线过多边形顶点或射线与多边形其中一边重合等情况还需特别判断。 这里就不特别判断 ...
1. 射线法介绍 在地图应用上,我们会经常需要判断一个点是否位于多边形区域内,这里介绍下采用射线法如何实现。 算法思想:从待判断的点向某一个方向引射线,计算和多边形交点的个数,如果个数是偶数或者0,则点在多边形外,如果是奇数,则在多边形内,如下图: 这里有两种 ...
判断点是否在凸多边形内的方法很多,此处仅给出使用向量叉积判断点是否在凸多边形内的方法。 以下图为例说明问题: 原则: 1. 将多边形的第i条边的第一个顶点指向点P得到向量 v1,然后将从第一个顶点指向第二个顶点得到向量v2,叉乘这两个向量。 2.如果叉乘结果与上一条边的叉 ...
凸多边形 Time Limit: 2000 MS Memory Limit: 65536 K Total Submit: 130(24 users) Total Accepted: 40(18 users) Rating: Special Judge ...
点和多边形关系的算法实现 好了,现在我们已经了解了矢量叉积的意义,以及判断直线段是否有交点的算法,现在回过头看看文章开始部分的讨论的问题:如何判断一个点是否在多边形内部? 根据射线法的描述,其核心是求解从P点发出的射线与多边形的边是否有交点。注意,这里说的是射线,而我们前面讨论 ...
如何判断一个点是否在多边形内部? (1)面积和判别法:判断目标点与多边形的每条边组成的三角形面积和是否等于该多边形,相等则在多边形内部。 (2)夹角和判别法:判断目标点与所有边的夹角和是否为360度,为360度则在多边形内部。 (3)引射线法:从目标点出发引一条射线,看这条射线和多边形所有 ...