原文:sklearn 之 单类支持向量机(One-Class SVM)

这里先列出 sklearn 官方给出的使用高斯核 RBF kernel one class svm 实现二维数据的异常检测: 效果如下图: 下面简单介绍一下 sklearn.svm.OneClassSVM 函数的用法: decision function self, X 点到分割超平面的有符号距离 fit self, X , y, sample weight 训练出样本 X 的软边界 fit pr ...

2021-04-28 16:58 0 240 推荐指数:

查看详情

支持向量One-Class SVM

假如现在有 \(\ell\) 个同一分布的观察数据,每条数据都有 \(p\) 个特征。如果现在加入一个或多个观察数据,那么是否这些数据与原有的数据十分不同,甚至我们可以怀疑其是否属于同一分布呢?反过来 ...

Thu Apr 29 00:56:00 CST 2021 0 397
单分类one-class SVM

对比与有正负样例的二分SVMone-class SVM可以训练出一个高维超球面,把数据尽可能紧的包围起来。 场景: 花果山上的老猴子,一生阅猴无数,但是从来没有见过其它的物种。有一天,猪八戒来到花果山找它们的大王,老猴子一声令下,把这个东西给我绑起来! 这里老猴子很清楚的知道这个外来物种 ...

Fri Apr 07 18:31:00 CST 2017 0 9035
sklearn.svm.SVC 支持向量参数详解

用法如下: 可选参数 C:正则化参数。正则化的强度与C成反比。必须严格为正。惩罚是平方的l2惩罚。(默认1.0), 惩罚参数越小,容忍性就越大 kernel:核函数类型,可 ...

Tue Aug 25 23:34:00 CST 2020 0 1624
SVM支持向量

1.什么是SVM 通过跟高斯“核”的结合,支持向量可以表达出非常复杂的分类界线,从而达成很好的的分类效果。“核”事实上就是一种特殊的函数,最典型的特征就是可以将低维的空间映射到高维的空间。 ​ 我们如何在二维平面划分出一个圆形的分类界线?在二维平面可能会很困难,但是通过“核”可以将二维 ...

Mon Aug 06 20:26:00 CST 2018 0 1282
支持向量SVM

断断续续看了好多天,赶紧补上坑。 感谢july的 http://blog.csdn.net/v_july_v/article/details/7624837/ 以及CSDN上淘的比较正规的SMO C++ 模板代码。~LINK~ 1995年提出的支持向量SVM)模型,是浅层学习中较新 ...

Sat Feb 14 19:51:00 CST 2015 0 4776
SVM支持向量

,RBF). 1.SVM支持向量的核函数 在SVM算法中,训练模型的过程实际上是对每个数据点对于 ...

Tue May 21 17:28:00 CST 2019 2 357
SVM 支持向量

支持向量就是使用了核函数的软间隔线性分类法,SVM可用于分类、回归和异常值检测(聚类)任务。“”在机器学习领域通常是指算法,支持向量是指能够影响决策的变量。 示意图如下(绿线为分类平面,红色和蓝色的点为支持向量): SVM原理 由逻辑回归引入[1] 逻辑回归是从特征中学 ...

Mon Jul 03 05:00:00 CST 2017 8 1631
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM