在这里学习的,在此简要做了些笔记。 壹、可解释性概述 1. 可解释性是什么 人类对模型决策/预测结果的理解程度。 对于深度学习而言,可解释性面临两个问题:①为甚会得到该结果?(过程)②为甚结果应该是这个?(结果) 理想状态:通过溯因推理,计算出输出结果,可是实现较好的模型解释性。 衡量一个 ...
目录 MetaKGR 论文 问题提出 特定关系学习 元学习 Meta Learning 实验 代码 DacKGR 论文 问题提出及形式化定义 模型 强化学习框架及策略网 动态预测 Dynamic Anticipation 动态补全 Dynamic Completion 策略优化 目标函数 实验 代码 BIMR 论文 问题提出 评价框架 路径可解释性得分 S p 的计算 实验 代码 这几篇论文是 ...
2021-05-07 15:47 0 471 推荐指数:
在这里学习的,在此简要做了些笔记。 壹、可解释性概述 1. 可解释性是什么 人类对模型决策/预测结果的理解程度。 对于深度学习而言,可解释性面临两个问题:①为甚会得到该结果?(过程)②为甚结果应该是这个?(结果) 理想状态:通过溯因推理,计算出输出结果,可是实现较好的模型解释性。 衡量一个 ...
与模型无关的局部可解释性方法(LIME) 在机器学习模型事后局部可解释性研究中,一种代表性方法是由Marco Tulio Ribeiro等人提出的Local Interpretable Model-Agnostic Explanation(LIME)。 一般地,对于每一个输入实例,LIME ...
目录 从词袋模型到BERT 分析BERT表示 不考虑上下文的方法 考虑语境的方法 结论 本文翻译自Are BERT Featu ...
为实践者和研究者提供机器学习可解释性算法的开源 Python 软件包。InterpretML 能提供以下两种 ...
一、模型可解释性 近年来,机器学习(深度学习)取得了一系列骄人战绩,但是其模型的深度和复杂度远远超出了人类理解的范畴,或者称之为黑盒(机器是否同样不能理解?),当一个机器学习模型泛化性能很好时,我们可以通过交叉验证验证其准确性,并将其应用在生产环境中,但是很难去解释这个模型为什么会做 ...
卷积神经网络模型可解释性 缺乏可解释性仍然是在许多应用中采用深层模型的一个关键障碍。在这项工作中,明确地调整了深层模型,这样人类用户可以在很短的时间内完成他们预测背后的过程。具体地说,训练了深度时间序列模型,使得类概率预测具有较高的精度,同时被节点较少的决策树紧密地建模。使用直观的玩具例子 ...
1. 可解释性是什么 0x1:广义可解释性 广义上的可解释性指: 比如我们在调试 bug 的时候,需要通过变量审查和日志信息定位到问题出在哪里。 比如在科学研究中面临一个新问题的研究时,我们需要查阅一些资料来了解这个新问题的基本概念和研究现状,以获得对研究方向的正确认识 ...