参考:https://zhuanlan.zhihu.com/p/31529643 在CTR预估中,负样本采样是一种常见的特征工程方法。一般CTR预估的原始正负样本比可能达到1:1000~1:10000左右,而要获取好的效果,一般需要采样到1:5~1:15之间(VC维可推导 ...
最好的trick就是保证数据精准前提下,如无必要,不要采样。既然数据是模型的上限,就不应该破坏这个上限。 聊聊什么是精准。 很多号称数据清洗的工作,都是工程体系太弱的后果,其实不是算法的问题。比如,没有曝光日志,用了服务端日志,伪曝光做了负样本 没有准确的曝光日志,比如卡片漏出了一个头用户根本没看到就记录了曝光日志,充当了负样本 场景里有引流模块,把用户在场景外的点击强插到前面,这个物品的样本是 ...
2021-03-30 21:16 0 379 推荐指数:
参考:https://zhuanlan.zhihu.com/p/31529643 在CTR预估中,负样本采样是一种常见的特征工程方法。一般CTR预估的原始正负样本比可能达到1:1000~1:10000左右,而要获取好的效果,一般需要采样到1:5~1:15之间(VC维可推导 ...
目录 概 主要内容 殊途同归 Gutmann M U, Hyvarinen A. Noise-contrastive estimat ...
正样本是指属于某目标类别的样本,负样本是指不属于目标类别的样本。 以分类问题为例,正样本即为我们想要分类出来的样本类型。比如在汽车分类场景下,我们需要确定一张照片是否为汽车,则在训练过程中,汽车图片就为正样本,非汽车图片为负样本,训练模型后得到一个分类模型。测试 ...
Anchor free的正负样本分配(yolox为例) step1: 初步筛选 step2: 精细化筛选 Anchor base(yolov5为例) ...
对于机器学习中的正负样本问题,之前思考过一次,但是后来又有些迷惑,又看了些网上的总结,记录在这里。 我们经常涉及到的任务有检测以及分类。 针对与分类问题,正样本则是我们想要正确分类出的类别所对应的样本,例如,我们要对一张图片进行分类,以确定其是否属于汽车,那么在训练的时候,汽车的图片则为正样本 ...
在机器学习中经常会遇到正负样本的问题,花了一点时间查找资料,基本上弄明白了一点到底是怎么回事,记录在这里以便以后查看,也希望能够帮助到有疑惑的人,当然也希望理解的比较透彻的人看到之后对于理解的不对的地方能够予以指点。 首先我将这个问题分为分类问题与检测问题两个方面进行理解。在分类问题中,这个问题 ...
转自:http://www.cnblogs.com/rainsoul/p/6247779.html 在机器学习中经常会遇到正负样本的问题,花了一点时间查找资料,基本上弄明白了一点到底是怎么回事,记录在这里以便以后查看,也希望能够帮助到有疑惑的人,当然也希望理解的比较透彻的人看到之后对于理解 ...
Word2vec模型本质:是一个用来生成词向量的、简单的神经网络模型。 通过计算相似度来降低原来输入词的维度,举个例子: 图.甲 网络结构如下: 图.乙 如乙图所示,我们一开始输入的是one-hot编码后 ...