import torch.nn as nn m = nn.Softmax(dim=0) input = torch.randn(2, 2, 3) print(input) print(m(input)) input: tensor([[[ 0.5450, -0.6264 ...
在torch中softmax的使用在torch中softmax的使用 在哪一维度上进行softmax操作,哪一维度的值之和为 输出: ...
2021-03-30 14:29 0 519 推荐指数:
import torch.nn as nn m = nn.Softmax(dim=0) input = torch.randn(2, 2, 3) print(input) print(m(input)) input: tensor([[[ 0.5450, -0.6264 ...
参考:https://pytorch-cn.readthedocs.io/zh/latest/package_references/functional/#_1 或: 对n维输入张量运用Softmax函数,将张量的每个元素缩放到(0,1)区间 ...
一、torch.cat()函数 熟悉C字符串的同学们应该都用过strcat()函数,这个函数在C/C++程序中用于连接2个C字符串。在pytorch中,同样有这样的函数,那就是torch.cat()函数. 先上源码定义:torch.cat(tensors,dim=0,out=None ...
本文将介绍: torch.nn包 定义一个简单的nn架构 定义优化器、损失函数 梯度的反向传播 将使用LeNet-5架构进行说明 一、torch.nn包 torch.nn包来构建网络; torch.nn.Module类作为自定义类的基类 ...
学习pytorch路程之动手学深度学习-3.4-3.7 置信度、置信区间参考:https://cloud.tencent.com/developer/news/452418 本人感觉还是挺好理解的 ...
背景 多分类问题里(单对象单标签),一般问题的setup都是一个输入,然后对应的输出是一个vector,这个vector的长度等于总共类别的个数。输入进入到训练好的网络里,predicted cla ...
训练中torch.backends.cudnn.benchmark的使用 一般将torch.backends.cudnn.benchmark设为True就可以大大提升卷积神经网络的运行速度。 原因:将会让程序在开始时花费一点额外时间,为整个网络的每个卷积层搜索最适合它的卷积实现算法,进而实现 ...