本文已在公众号机器视觉与算法建模发布,转载请联系我。 使用TensorFlow的基本流程 本篇文章将介绍使用tensorflow的训练模型的基本流程,包括制作读取TFRecord,训练和保存模型,读取模型。 准备 语言:Python3 库:tensorflow、cv2 ...
基础LENET 模型 基于MobileNet的改进模型 自动保存准确度大于 . 的模型并转化成tflite 使用TensorFlowLiteModelMaker训练模型 该卷积神经网络基于EfficientNet Lite ,效果比前面两个好得多 ...
2021-03-09 18:50 0 543 推荐指数:
本文已在公众号机器视觉与算法建模发布,转载请联系我。 使用TensorFlow的基本流程 本篇文章将介绍使用tensorflow的训练模型的基本流程,包括制作读取TFRecord,训练和保存模型,读取模型。 准备 语言:Python3 库:tensorflow、cv2 ...
首先检测TPU存在: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() #如果先前设置好了TPU_NAME环境变量,不需要再 ...
平时工作就是做深度学习,但是深度学习没有落地就是比较虚,目前在移动端或嵌入式端应用的比较实际,也了解到目前主要有 caffe2,腾讯ncnn,tensorflow,因为工作用tensorflow比较多,所以也就从tensorflow上下手了。 下面内容主要参考&翻译 ...
Resource TF Lite 资源 TensorFlow Lite Object Detection on Android and Raspberry Pi Relevant Github: https://github.com/EdjeElectronics ...
深度学习的训练过程常常非常耗时,一个模型训练几个小时是家常便饭,训练几天也是常有的事情,有时候甚至要训练几十天。 训练过程的耗时主要来自于两个部分,一部分来自数据准备,另一部分来自参数迭代。 当数据准备过程还是模型训练时间的主要瓶颈时,我们可以使用更多进程来准备数据。 当参数迭代过程成为训练 ...
如果想尝试使用Google Colab上的TPU来训练模型,也是非常方便,仅需添加6行代码。 在Colab笔记本中:修改->笔记本设置->硬件加速器 中选择 TPU 注:以下代码只能在Colab 上才能正确执行。 可通过以下colab链接测试效果《tf_TPU》: https ...
如果使用多GPU训练模型,推荐使用内置fit方法,较为方便,仅需添加2行代码。 在Colab笔记本中:修改->笔记本设置->硬件加速器 中选择 GPU 注:以下代码只能在Colab 上才能正确执行。 可通过以下colab链接测试效果《tf_多GPU》: https ...
熱身資源 Resources Ref: object detection模型转换成TensorFlow Lite,在Android应用, which looks good. Ref: Tensorflow部署到移动端, no SSD. Ref: TensorFlow Mobilenet ...