原文:SSL0-半监督学习方法(Semi-supervised Learning)的分类

根据模型的训练策略划分: 直推式学习 Transductive Semi supervised Learning 无标记数据就是最终要用来测试的数据,学习的目的就是在这些数据上取得最佳泛化能力。 归纳式学习 Inductive Semi supervised Learning 认为待识别样本不能是训练中所用的无标签数据,不能参与到训练过程。 这两者的区别在于:预测样本是不是在训练的时候已经见 用 ...

2021-03-08 19:12 0 628 推荐指数:

查看详情

监督学习(semi-supervised learning)综述

一些参考资料: [1] 李宏毅机器学习教学视频 semi-supervise [2] 李宏毅视频的文字稿 (上面两个资料的讲解顺序是:semi-supervised generative model --> low density assumption --> ...

Thu Jun 24 00:29:00 CST 2021 0 458
监督学习 Semi-Supervised-Learning

SSL按照统计学习理论的角度包括直推(Transductive)SSL和归纳(Inductive)SSL两类模式。直推SSL只处理样本空间内给定的训练数据,利用训练数据中有类标签的样本和无类标签的样例进行训练,预测训练数据中无类标签的样例的类标签;归纳SSL处理整个样本空间中所有给定和未知的样例 ...

Thu Nov 23 01:14:00 CST 2017 0 1386
如何区分监督学习(supervised learning)和非监督学习(unsupervised learning)

监督学习:简单来说就是给定一定的训练样本(这里一定要注意,样本是既有数据,也有数据对应的结果),利用这个样本进行训练得到一个模型(可以说是一个函数),然后利用这个模型,将所有的输入映射为相应的输出,之后对输出进行简单的判断从而达到了分类(或者说回归)的问题。简单做一个区分,分类就是离散的数据,回归 ...

Tue Dec 13 05:08:00 CST 2016 0 2790
如何区分监督学习(supervised learning)和非监督学习(unsupervised learning)

机器学习的常用方法中,我们知道一般分为监督学习和非监督学习。 l 监督学习监督学习,简单来说就是给定一定的训练样本(这里一定要注意,这个样本是既有数据,也有数据相对应的结果),利用这个样本进行训练得到一个模型(可以说就是一个函数),然后利用这个模型,将所有的输入映射为相应的输出,之后对输出 ...

Sat Apr 16 18:08:00 CST 2022 0 955
监督学习方法

学习资料:《统计学习方法 第二版》、《机器学习实战》、吴恩达机器学习课程 一. 感知机Proceptron 感知机是根据输入实例的特征向量\(x\)对其进行二类分类的线性分类模型:\(f(x)=\operatorname{sign}(w \cdot x+b)\),感知机模型 ...

Sat Apr 11 03:29:00 CST 2020 0 667
监督学习方法

学习资料:吴恩达机器学习课程 一. K-means算法 1. 算法思想 K-均值算法是无监督学习中聚类算法中的一个 初始化k个聚类中心 循环: 将每个训练样本归类到最近的聚类中心组成一个个聚类 移动聚类中心到本身聚类的中心(平均值 ...

Sat Apr 11 03:39:00 CST 2020 0 1350
经典监督学习方法

监督学习(Unsupervised learning)最典型的就是聚类,事先不知道样本的类别,通过某种办法 ...

Thu Aug 08 23:39:00 CST 2019 0 740
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM